Java Code Examples for org.apache.spark.api.java.JavaPairRDD#mapValues()
The following examples show how to use
org.apache.spark.api.java.JavaPairRDD#mapValues() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: RDDAggregateUtils.java From systemds with Apache License 2.0 | 6 votes |
public static JavaPairRDD<MatrixIndexes, MatrixBlock> aggByKeyStable( JavaPairRDD<MatrixIndexes, MatrixBlock> in, AggregateOperator aop, int numPartitions, boolean deepCopyCombiner ) { //stable sum of blocks per key, by passing correction blocks along with aggregates JavaPairRDD<MatrixIndexes, CorrMatrixBlock> tmp = in.combineByKey( new CreateCorrBlockCombinerFunction(deepCopyCombiner), new MergeAggBlockValueFunction(aop), new MergeAggBlockCombinerFunction(aop), numPartitions ); //strip-off correction blocks from JavaPairRDD<MatrixIndexes, MatrixBlock> out = tmp.mapValues( new ExtractMatrixBlock() ); //return the aggregate rdd return out; }
Example 2
Source File: BinUaggChainSPInstruction.java From systemds with Apache License 2.0 | 6 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; //get input JavaPairRDD<MatrixIndexes,MatrixBlock> in = sec.getBinaryMatrixBlockRDDHandleForVariable( input1.getName() ); //execute unary builtin operation JavaPairRDD<MatrixIndexes,MatrixBlock> out = in.mapValues(new RDDBinUaggChainFunction(_bOp, _uaggOp)); //set output RDD updateUnaryOutputDataCharacteristics(sec); sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); }
Example 3
Source File: RDDAggregateUtils.java From systemds with Apache License 2.0 | 6 votes |
public static JavaPairRDD<MatrixIndexes, MatrixBlock> sumByKeyStable(JavaPairRDD<MatrixIndexes, MatrixBlock> in, int numPartitions, boolean deepCopyCombiner) { //stable sum of blocks per key, by passing correction blocks along with aggregates JavaPairRDD<MatrixIndexes, CorrMatrixBlock> tmp = in.combineByKey( new CreateCorrBlockCombinerFunction(deepCopyCombiner), new MergeSumBlockValueFunction(deepCopyCombiner), new MergeSumBlockCombinerFunction(deepCopyCombiner), numPartitions ); //strip-off correction blocks from JavaPairRDD<MatrixIndexes, MatrixBlock> out = tmp.mapValues( new ExtractMatrixBlock() ); //return the aggregate rdd return out; }
Example 4
Source File: RDDAggregateUtils.java From systemds with Apache License 2.0 | 6 votes |
public static JavaPairRDD<MatrixIndexes, MatrixBlock> aggByKeyStable( JavaPairRDD<MatrixIndexes, MatrixBlock> in, AggregateOperator aop, int numPartitions, boolean deepCopyCombiner ) { //stable sum of blocks per key, by passing correction blocks along with aggregates JavaPairRDD<MatrixIndexes, CorrMatrixBlock> tmp = in.combineByKey( new CreateCorrBlockCombinerFunction(deepCopyCombiner), new MergeAggBlockValueFunction(aop), new MergeAggBlockCombinerFunction(aop), numPartitions ); //strip-off correction blocks from JavaPairRDD<MatrixIndexes, MatrixBlock> out = tmp.mapValues( new ExtractMatrixBlock() ); //return the aggregate rdd return out; }
Example 5
Source File: BinUaggChainSPInstruction.java From systemds with Apache License 2.0 | 6 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; //get input JavaPairRDD<MatrixIndexes,MatrixBlock> in = sec.getBinaryMatrixBlockRDDHandleForVariable( input1.getName() ); //execute unary builtin operation JavaPairRDD<MatrixIndexes,MatrixBlock> out = in.mapValues(new RDDBinUaggChainFunction(_bOp, _uaggOp)); //set output RDD updateUnaryOutputDataCharacteristics(sec); sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); }
Example 6
Source File: UnaryMatrixSPInstruction.java From systemds with Apache License 2.0 | 6 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; //get input JavaPairRDD<MatrixIndexes,MatrixBlock> in = sec.getBinaryMatrixBlockRDDHandleForVariable( input1.getName() ); //execute unary builtin operation UnaryOperator uop = (UnaryOperator) _optr; JavaPairRDD<MatrixIndexes,MatrixBlock> out = in.mapValues(new RDDMatrixBuiltinUnaryOp(uop)); //set output RDD updateUnaryOutputDataCharacteristics(sec); sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); }
Example 7
Source File: CumulativeOffsetSPInstruction.java From systemds with Apache License 2.0 | 5 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; DataCharacteristics mc1 = sec.getDataCharacteristics(input1.getName()); DataCharacteristics mc2 = sec.getDataCharacteristics(input2.getName()); long rlen = mc2.getRows(); int blen = mc2.getBlocksize(); //get and join inputs JavaPairRDD<MatrixIndexes,MatrixBlock> inData = sec.getBinaryMatrixBlockRDDHandleForVariable(input1.getName()); JavaPairRDD<MatrixIndexes,Tuple2<MatrixBlock,MatrixBlock>> joined = null; boolean broadcast = _broadcast && !SparkUtils.isHashPartitioned(inData); if( broadcast ) { //broadcast offsets and broadcast join with data PartitionedBroadcast<MatrixBlock> inAgg = sec.getBroadcastForVariable(input2.getName()); joined = inData.mapToPair(new RDDCumSplitLookupFunction(inAgg,_initValue, rlen, blen)); } else { //prepare aggregates (cumsplit of offsets) and repartition join with data joined = inData.join(sec .getBinaryMatrixBlockRDDHandleForVariable(input2.getName()) .flatMapToPair(new RDDCumSplitFunction(_initValue, rlen, blen))); } //execute cumulative offset (apply cumulative op w/ offsets) JavaPairRDD<MatrixIndexes,MatrixBlock> out = joined .mapValues(new RDDCumOffsetFunction(_uop, _cumsumprod)); //put output handle in symbol table if( _cumsumprod ) sec.getDataCharacteristics(output.getName()) .set(mc1.getRows(), 1, mc1.getBlocksize(), mc1.getBlocksize()); else //general case updateUnaryOutputDataCharacteristics(sec); sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); sec.addLineage(output.getName(), input2.getName(), broadcast); }
Example 8
Source File: BinaryFrameFrameSPInstruction.java From systemds with Apache License 2.0 | 5 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; // Get input RDDs JavaPairRDD<Long, FrameBlock> in1 = sec.getFrameBinaryBlockRDDHandleForVariable(input1.getName()); // get schema frame-block Broadcast<FrameBlock> fb = sec.getSparkContext().broadcast(sec.getFrameInput(input2.getName())); JavaPairRDD<Long, FrameBlock> out = in1.mapValues(new isCorrectbySchema(fb.getValue())); //release input frame sec.releaseFrameInput(input2.getName()); //set output RDD sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); }
Example 9
Source File: CompressionSPInstruction.java From systemds with Apache License 2.0 | 5 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext) ec; // get input rdd handle JavaPairRDD<MatrixIndexes, MatrixBlock> in = sec.getBinaryMatrixBlockRDDHandleForVariable(input1.getName()); // execute compression JavaPairRDD<MatrixIndexes, MatrixBlock> out = in.mapValues(new CompressionFunction()); // set outputs sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(input1.getName(), output.getName()); }
Example 10
Source File: SpoofSPInstruction.java From systemds with Apache License 2.0 | 5 votes |
private static JavaPairRDD<MatrixIndexes, MatrixBlock[]> createJoinedInputRDD(SparkExecutionContext sec, CPOperand[] inputs, boolean[] bcVect, boolean outer) { //get input rdd for main input int main = getMainInputIndex(inputs, bcVect); DataCharacteristics mcIn = sec.getDataCharacteristics(inputs[main].getName()); JavaPairRDD<MatrixIndexes, MatrixBlock> in = sec.getBinaryMatrixBlockRDDHandleForVariable(inputs[main].getName()); JavaPairRDD<MatrixIndexes, MatrixBlock[]> ret = in.mapValues(new MapInputSignature()); for( int i=0; i<inputs.length; i++ ) if( i != main && inputs[i].getDataType().isMatrix() && !bcVect[i] ) { //create side input rdd String varname = inputs[i].getName(); JavaPairRDD<MatrixIndexes, MatrixBlock> tmp = sec .getBinaryMatrixBlockRDDHandleForVariable(varname); DataCharacteristics mcTmp = sec.getDataCharacteristics(varname); //replicate blocks if mismatch with main input if( outer && i==2 ) tmp = tmp.flatMapToPair(new ReplicateRightFactorFunction(mcIn.getRows(), mcIn.getBlocksize())); else if( mcIn.getNumRowBlocks() > mcTmp.getNumRowBlocks() ) tmp = tmp.flatMapToPair(new ReplicateBlockFunction(mcIn.getRows(), mcIn.getBlocksize(), false)); else if( mcIn.getNumColBlocks() > mcTmp.getNumColBlocks() ) tmp = tmp.flatMapToPair(new ReplicateBlockFunction(mcIn.getCols(), mcIn.getBlocksize(), true)); //join main and side inputs and consolidate signature ret = ret.join(tmp) .mapValues(new MapJoinSignature()); } return ret; }
Example 11
Source File: SparkUtils.java From systemds with Apache License 2.0 | 5 votes |
/** * Creates a partitioning-preserving copy of the input matrix RDD. If a deep copy is * requested, indexes and values are copied, otherwise they are simply passed through. * * @param in matrix as {@code JavaPairRDD<MatrixIndexes,MatrixBlock>} * @param deep if true, perform deep copy * @return matrix as {@code JavaPairRDD<MatrixIndexes,MatrixBlock>} */ public static JavaPairRDD<MatrixIndexes,MatrixBlock> copyBinaryBlockMatrix( JavaPairRDD<MatrixIndexes,MatrixBlock> in, boolean deep) { if( !deep ) //pass through of indexes and blocks return in.mapValues(new CopyMatrixBlockFunction(false)); else //requires key access, so use mappartitions return in.mapPartitionsToPair(new CopyMatrixBlockPairFunction(deep), true); }
Example 12
Source File: CumulativeOffsetSPInstruction.java From systemds with Apache License 2.0 | 5 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; DataCharacteristics mc1 = sec.getDataCharacteristics(input1.getName()); DataCharacteristics mc2 = sec.getDataCharacteristics(input2.getName()); long rlen = mc2.getRows(); int blen = mc2.getBlocksize(); //get and join inputs JavaPairRDD<MatrixIndexes,MatrixBlock> inData = sec.getBinaryMatrixBlockRDDHandleForVariable(input1.getName()); JavaPairRDD<MatrixIndexes,Tuple2<MatrixBlock,MatrixBlock>> joined = null; boolean broadcast = _broadcast && !SparkUtils.isHashPartitioned(inData); if( broadcast ) { //broadcast offsets and broadcast join with data PartitionedBroadcast<MatrixBlock> inAgg = sec.getBroadcastForVariable(input2.getName()); joined = inData.mapToPair(new RDDCumSplitLookupFunction(inAgg,_initValue, rlen, blen)); } else { //prepare aggregates (cumsplit of offsets) and repartition join with data joined = inData.join(sec .getBinaryMatrixBlockRDDHandleForVariable(input2.getName()) .flatMapToPair(new RDDCumSplitFunction(_initValue, rlen, blen))); } //execute cumulative offset (apply cumulative op w/ offsets) JavaPairRDD<MatrixIndexes,MatrixBlock> out = joined .mapValues(new RDDCumOffsetFunction(_uop, _cumsumprod)); //put output handle in symbol table if( _cumsumprod ) sec.getDataCharacteristics(output.getName()) .set(mc1.getRows(), 1, mc1.getBlocksize(), mc1.getBlocksize()); else //general case updateUnaryOutputDataCharacteristics(sec); sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); sec.addLineage(output.getName(), input2.getName(), broadcast); }
Example 13
Source File: SparkExecutionContext.java From systemds with Apache License 2.0 | 4 votes |
@SuppressWarnings("unchecked") public void repartitionAndCacheMatrixObject( String var ) { MatrixObject mo = getMatrixObject(var); DataCharacteristics dcIn = mo.getDataCharacteristics(); //double check size to avoid unnecessary spark context creation if( !OptimizerUtils.exceedsCachingThreshold(mo.getNumColumns(), OptimizerUtils.estimateSizeExactSparsity(dcIn)) ) return; //get input rdd and default storage level JavaPairRDD<MatrixIndexes,MatrixBlock> in = (JavaPairRDD<MatrixIndexes, MatrixBlock>) getRDDHandleForMatrixObject(mo, FileFormat.BINARY); //avoid unnecessary caching of input in order to reduce memory pressure if( mo.getRDDHandle().allowsShortCircuitRead() && isRDDMarkedForCaching(in.id()) && !isRDDCached(in.id()) ) { in = (JavaPairRDD<MatrixIndexes,MatrixBlock>) ((RDDObject)mo.getRDDHandle().getLineageChilds().get(0)).getRDD(); //investigate issue of unnecessarily large number of partitions int numPartitions = SparkUtils.getNumPreferredPartitions(dcIn, in); if( numPartitions < in.getNumPartitions() ) in = in.coalesce( numPartitions ); } //repartition rdd (force creation of shuffled rdd via merge), note: without deep copy albeit //executed on the original data, because there will be no merge, i.e., no key duplicates JavaPairRDD<MatrixIndexes,MatrixBlock> out = RDDAggregateUtils.mergeByKey(in, false); //convert mcsr into memory-efficient csr if potentially sparse if( OptimizerUtils.checkSparseBlockCSRConversion(dcIn) ) { out = out.mapValues(new CreateSparseBlockFunction(SparseBlock.Type.CSR)); } //persist rdd in default storage level out.persist( Checkpoint.DEFAULT_STORAGE_LEVEL ) .count(); //trigger caching to prevent contention //create new rdd handle, in-place of current matrix object RDDObject inro = mo.getRDDHandle(); //guaranteed to exist (see above) RDDObject outro = new RDDObject(out); //create new rdd object outro.setCheckpointRDD(true); //mark as checkpointed outro.addLineageChild(inro); //keep lineage to prevent cycles on cleanup mo.setRDDHandle(outro); }
Example 14
Source File: AggregateUnarySPInstruction.java From systemds with Apache License 2.0 | 4 votes |
private void processTensorAggregate(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; //get input // TODO support DataTensor JavaPairRDD<TensorIndexes, TensorBlock> in = sec.getBinaryTensorBlockRDDHandleForVariable( input1.getName() ); JavaPairRDD<TensorIndexes, TensorBlock> out = in; // TODO: filter input blocks for trace //execute unary aggregate operation AggregateUnaryOperator auop = (AggregateUnaryOperator)_optr; AggregateOperator aggop = _aop; //perform aggregation if necessary and put output into symbol table if( _aggtype == SparkAggType.SINGLE_BLOCK ) { // TODO filter non empty blocks if sparse safe JavaRDD<TensorBlock> out2 = out.map(new RDDUTensorAggFunction2(auop)); TensorBlock out3 = RDDAggregateUtils.aggStableTensor(out2, aggop); //put output block into symbol table (no lineage because single block) //this also includes implicit maintenance of data characteristics // TODO generalize to drop depending on location of correction // TODO support DataTensor TensorBlock out4 = new TensorBlock(out3.getValueType(), new int[]{1, 1}); out4.set(0, 0, out3.get(0, 0)); sec.setTensorOutput(output.getName(), out4); } else //MULTI_BLOCK or NONE { if( _aggtype == SparkAggType.NONE ) { //in case of no block aggregation, we always drop the correction as well as //use a partitioning-preserving mapvalues out = out.mapValues(new RDDUTensorAggValueFunction(auop)); } else if( _aggtype == SparkAggType.MULTI_BLOCK ) { // TODO MULTI_BLOCK throw new DMLRuntimeException("Multi block spark aggregations are not supported for tensors yet."); /* //in case of multi-block aggregation, we always keep the correction out = out.mapToPair(new RDDUTensorAggFunction(auop, dc.getBlocksize(), dc.getBlocksize())); out = RDDAggregateUtils.aggByKeyStable(out, aggop, false); //drop correction after aggregation if required (aggbykey creates //partitioning, drop correction via partitioning-preserving mapvalues) if( auop.aggOp.correctionExists ) out = out.mapValues( new AggregateDropCorrectionFunction(aggop) ); */ } //put output RDD handle into symbol table updateUnaryAggOutputDataCharacteristics(sec, auop.indexFn); sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); } }
Example 15
Source File: Basic.java From learning-spark-with-java with MIT License | 4 votes |
public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("Pairs-Basic") .master("local[4]") .getOrCreate(); JavaSparkContext sc = new JavaSparkContext(spark.sparkContext()); List<Tuple2<String, Integer>> pairs = Arrays.asList( new Tuple2<>("1",9), new Tuple2<>("1",2), new Tuple2<>("1",1), new Tuple2<>("2",3), new Tuple2<>("2",4), new Tuple2<>("3",1), new Tuple2<>("3",5), new Tuple2<>("6",2), new Tuple2<>("6",1), new Tuple2<>("6",4), new Tuple2<>("8",1)); // a randomly partitioned pair RDD JavaPairRDD<String, Integer> pairsRDD = sc.parallelizePairs(pairs, 4); System.out.println("*** the original pairs"); pairsRDD.foreach(i -> System.out.println(i)); // // Pairs can be collected as a Map of, but this only works well if the // keys are unique. Here they aren't so an arbitrary value is chosen for each: // Map<String, Integer> pairsAsMap = pairsRDD.collectAsMap(); System.out.println("*** the pretty useless map"); System.out.println(pairsAsMap); // let's say we just want the pair with minimum value for each key // we can use one of the handy methods in PairRDDFunctions. To reduce we need // only supply a single function to combine all the values for each key -- the result // has to have the same type as the values JavaPairRDD<String, Integer> reducedRDD = pairsRDD.reduceByKey(Math::min); System.out.println("*** the reduced pairs"); reducedRDD.foreach(i -> System.out.println(i)); // the reduced pairs have unique keys so collecting to a map works a lot better Map<String, Integer> reducedAsMap = reducedRDD.collectAsMap(); System.out.println("*** the reduced pairs as a map"); System.out.println(reducedAsMap); // folding is a little mor general: we get to specifiy the identity value: // say 0 for adding and 1 for multiplying JavaPairRDD<String, Integer> foldedRDD = pairsRDD.foldByKey(1, (x, y) -> x * y); System.out.println("*** the folded pairs"); foldedRDD.foreach(i -> System.out.println(i)); // Combining is more general: you can produce values of a different type, which is very powerful. // You need to provide three functions: the first converts an individual value to the new type, the second // incorporates an additional value into the the result, and the third combines intermediate results, which is // used by execution to avoid excessive communication between partitions. The first function is applied once // per partition and the second is used for each additional value in the partition. // Below is a pretty classical example of its use: compute a per-key average by first computing the sum and count // for each key and then dividing. JavaPairRDD<String, Tuple2<Integer, Integer>> combinedRDD = pairsRDD.combineByKey( value -> new Tuple2<>(value, 1), (sumAndCount, value) -> new Tuple2<>(sumAndCount._1() + value, sumAndCount._2() + 1), (sumAndCount1, sumAndCount2) -> new Tuple2<>(sumAndCount1._1() + sumAndCount2._1(), sumAndCount1._2() + sumAndCount2._2()) ); JavaPairRDD<String, Double> averageRDD = combinedRDD.mapValues(sumAndCount -> (double) sumAndCount._1() / sumAndCount._2()); System.out.println("*** the average pairs"); averageRDD.foreach(i -> System.out.println(i)); // The dividing could be done just by calling map, but in Java this requires a lot of conversion between the // two kinds of RDD and ends up *VERY* cumbersome. JavaRDD<Tuple2<String, Tuple2<Integer, Integer>>> tupleCombinedRDD = JavaRDD.fromRDD(combinedRDD.rdd(), combinedRDD.classTag()); JavaRDD<Tuple2<String, Double>> tupleDividedRDD = tupleCombinedRDD.map(keyAndsumAndCount -> new Tuple2<>(keyAndsumAndCount._1(), (double) keyAndsumAndCount._2()._1() / keyAndsumAndCount._2()._2())); JavaPairRDD<String, Double> averageRDDtheHardWay = JavaPairRDD.fromJavaRDD(tupleDividedRDD); // remember these won't necessarily come out int he same order so they may not obviously be // the same as above System.out.println("*** the average pairs the hard way"); averageRDDtheHardWay.foreach(i -> System.out.println(i)); spark.stop(); }
Example 16
Source File: TernarySPInstruction.java From systemds with Apache License 2.0 | 4 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; JavaPairRDD<MatrixIndexes,MatrixBlock> in1 = !input1.isMatrix() ? null : sec.getBinaryMatrixBlockRDDHandleForVariable(input1.getName()); JavaPairRDD<MatrixIndexes,MatrixBlock> in2 = !input2.isMatrix() ? null : sec.getBinaryMatrixBlockRDDHandleForVariable(input2.getName()); JavaPairRDD<MatrixIndexes,MatrixBlock> in3 = !input3.isMatrix() ? null : sec.getBinaryMatrixBlockRDDHandleForVariable(input3.getName()); MatrixBlock m1 = input1.isMatrix() ? null : new MatrixBlock(ec.getScalarInput(input1).getDoubleValue()); MatrixBlock m2 = input2.isMatrix() ? null : new MatrixBlock(ec.getScalarInput(input2).getDoubleValue()); MatrixBlock m3 = input3.isMatrix() ? null : new MatrixBlock(ec.getScalarInput(input3).getDoubleValue()); TernaryOperator op = (TernaryOperator) _optr; JavaPairRDD<MatrixIndexes,MatrixBlock> out = null; if( input1.isMatrix() && !input2.isMatrix() && !input3.isMatrix() ) out = in1.mapValues(new TernaryFunctionMSS(op, m1, m2, m3)); else if( !input1.isMatrix() && input2.isMatrix() && !input3.isMatrix() ) out = in2.mapValues(new TernaryFunctionSMS(op, m1, m2, m3)); else if( !input1.isMatrix() && !input2.isMatrix() && input3.isMatrix() ) out = in3.mapValues(new TernaryFunctionSSM(op, m1, m2, m3)); else if( input1.isMatrix() && input2.isMatrix() && !input3.isMatrix() ) out = in1.join(in2).mapValues(new TernaryFunctionMMS(op, m1, m2, m3)); else if( input1.isMatrix() && !input2.isMatrix() && input3.isMatrix() ) out = in1.join(in3).mapValues(new TernaryFunctionMSM(op, m1, m2, m3)); else if( !input1.isMatrix() && input2.isMatrix() && input3.isMatrix() ) out = in2.join(in3).mapValues(new TernaryFunctionSMM(op, m1, m2, m3)); else // all matrices out = in1.join(in2).join(in3).mapValues(new TernaryFunctionMMM(op, m1, m2, m3)); //set output RDD updateTernaryOutputDataCharacteristics(sec); sec.setRDDHandleForVariable(output.getName(), out); if( input1.isMatrix() ) sec.addLineageRDD(output.getName(), input1.getName()); if( input2.isMatrix() ) sec.addLineageRDD(output.getName(), input2.getName()); if( input3.isMatrix() ) sec.addLineageRDD(output.getName(), input3.getName()); }
Example 17
Source File: PageRankSpark.java From graphify with Apache License 2.0 | 4 votes |
public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: JavaPageRank <file> <number_of_iterations>"); System.exit(1); } SparkConf sparkConf = new SparkConf().setAppName("Graphify"); JavaSparkContext ctx = new JavaSparkContext(sparkConf); JavaRDD<String> lines = ctx.textFile(args[0], 1); // Loads all URLs from input file and initialize their neighbors. JavaPairRDD<String, Iterable<String>> links = lines.mapToPair(s -> { String[] parts = SPACES.split(s); return new Tuple2<>(parts[0], parts[1]); }).distinct().groupByKey().cache(); // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one. JavaPairRDD<String, Double> ranks = links.mapValues(rs -> 1.0); // Calculates and updates URL ranks continuously using PageRank algorithm. for (int current = 0; current < Integer.parseInt(args[1]); current++) { // Calculates URL contributions to the rank of other URLs. JavaPairRDD<String, Double> contribs = links.join(ranks).values() .flatMapToPair(s -> { int urlCount = Iterables.size(s._1()); List<Tuple2<String, Double>> results = new ArrayList<>(); for (String n : s._1()) { results.add(new Tuple2<>(n, s._2() / urlCount)); } return results; }); // Re-calculates URL ranks based on neighbor contributions. ranks = contribs.reduceByKey(new Sum()).mapValues(sum -> 0.15 + sum * 0.85); } // Collects all URL ranks and dump them to console. List<Tuple2<String, Double>> output = ranks.collect(); for (Tuple2<?,?> tuple : output) { System.out.println(tuple._1() + " has rank: " + tuple._2() + "."); } ctx.stop(); }
Example 18
Source File: TernarySPInstruction.java From systemds with Apache License 2.0 | 4 votes |
@Override public void processInstruction(ExecutionContext ec) { SparkExecutionContext sec = (SparkExecutionContext)ec; JavaPairRDD<MatrixIndexes,MatrixBlock> in1 = !input1.isMatrix() ? null : sec.getBinaryMatrixBlockRDDHandleForVariable(input1.getName()); JavaPairRDD<MatrixIndexes,MatrixBlock> in2 = !input2.isMatrix() ? null : sec.getBinaryMatrixBlockRDDHandleForVariable(input2.getName()); JavaPairRDD<MatrixIndexes,MatrixBlock> in3 = !input3.isMatrix() ? null : sec.getBinaryMatrixBlockRDDHandleForVariable(input3.getName()); MatrixBlock m1 = input1.isMatrix() ? null : new MatrixBlock(ec.getScalarInput(input1).getDoubleValue()); MatrixBlock m2 = input2.isMatrix() ? null : new MatrixBlock(ec.getScalarInput(input2).getDoubleValue()); MatrixBlock m3 = input3.isMatrix() ? null : new MatrixBlock(ec.getScalarInput(input3).getDoubleValue()); TernaryOperator op = (TernaryOperator) _optr; JavaPairRDD<MatrixIndexes,MatrixBlock> out = null; if( input1.isMatrix() && !input2.isMatrix() && !input3.isMatrix() ) out = in1.mapValues(new TernaryFunctionMSS(op, m1, m2, m3)); else if( !input1.isMatrix() && input2.isMatrix() && !input3.isMatrix() ) out = in2.mapValues(new TernaryFunctionSMS(op, m1, m2, m3)); else if( !input1.isMatrix() && !input2.isMatrix() && input3.isMatrix() ) out = in3.mapValues(new TernaryFunctionSSM(op, m1, m2, m3)); else if( input1.isMatrix() && input2.isMatrix() && !input3.isMatrix() ) out = in1.join(in2).mapValues(new TernaryFunctionMMS(op, m1, m2, m3)); else if( input1.isMatrix() && !input2.isMatrix() && input3.isMatrix() ) out = in1.join(in3).mapValues(new TernaryFunctionMSM(op, m1, m2, m3)); else if( !input1.isMatrix() && input2.isMatrix() && input3.isMatrix() ) out = in2.join(in3).mapValues(new TernaryFunctionSMM(op, m1, m2, m3)); else // all matrices out = in1.join(in2).join(in3).mapValues(new TernaryFunctionMMM(op, m1, m2, m3)); //set output RDD updateTernaryOutputDataCharacteristics(sec); sec.setRDDHandleForVariable(output.getName(), out); if( input1.isMatrix() ) sec.addLineageRDD(output.getName(), input1.getName()); if( input2.isMatrix() ) sec.addLineageRDD(output.getName(), input2.getName()); if( input3.isMatrix() ) sec.addLineageRDD(output.getName(), input3.getName()); }
Example 19
Source File: SparkExecutionContext.java From systemds with Apache License 2.0 | 4 votes |
@SuppressWarnings("unchecked") public void repartitionAndCacheMatrixObject( String var ) { MatrixObject mo = getMatrixObject(var); DataCharacteristics dcIn = mo.getDataCharacteristics(); //double check size to avoid unnecessary spark context creation if( !OptimizerUtils.exceedsCachingThreshold(mo.getNumColumns(), OptimizerUtils.estimateSizeExactSparsity(dcIn)) ) return; //get input rdd and default storage level JavaPairRDD<MatrixIndexes,MatrixBlock> in = (JavaPairRDD<MatrixIndexes, MatrixBlock>) getRDDHandleForMatrixObject(mo, InputInfo.BinaryBlockInputInfo); //avoid unnecessary caching of input in order to reduce memory pressure if( mo.getRDDHandle().allowsShortCircuitRead() && isRDDMarkedForCaching(in.id()) && !isRDDCached(in.id()) ) { in = (JavaPairRDD<MatrixIndexes,MatrixBlock>) ((RDDObject)mo.getRDDHandle().getLineageChilds().get(0)).getRDD(); //investigate issue of unnecessarily large number of partitions int numPartitions = SparkUtils.getNumPreferredPartitions(dcIn, in); if( numPartitions < in.getNumPartitions() ) in = in.coalesce( numPartitions ); } //repartition rdd (force creation of shuffled rdd via merge), note: without deep copy albeit //executed on the original data, because there will be no merge, i.e., no key duplicates JavaPairRDD<MatrixIndexes,MatrixBlock> out = RDDAggregateUtils.mergeByKey(in, false); //convert mcsr into memory-efficient csr if potentially sparse if( OptimizerUtils.checkSparseBlockCSRConversion(dcIn) ) { out = out.mapValues(new CreateSparseBlockFunction(SparseBlock.Type.CSR)); } //persist rdd in default storage level out.persist( Checkpoint.DEFAULT_STORAGE_LEVEL ) .count(); //trigger caching to prevent contention //create new rdd handle, in-place of current matrix object RDDObject inro = mo.getRDDHandle(); //guaranteed to exist (see above) RDDObject outro = new RDDObject(out); //create new rdd object outro.setCheckpointRDD(true); //mark as checkpointed outro.addLineageChild(inro); //keep lineage to prevent cycles on cleanup mo.setRDDHandle(outro); }