Java Code Examples for org.apache.commons.math3.stat.descriptive.SummaryStatistics#addValue()
The following examples show how to use
org.apache.commons.math3.stat.descriptive.SummaryStatistics#addValue() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: OneWayAnova.java From astor with GNU General Public License v2.0 | 6 votes |
/** * This method calls the method that actually does the calculations (except * P-value). * * @param categoryData * <code>Collection</code> of <code>double[]</code> arrays each * containing data for one category * @return computed AnovaStats * @throws NullArgumentException * if <code>categoryData</code> is <code>null</code> * @throws DimensionMismatchException * if the length of the <code>categoryData</code> array is less * than 2 or a contained <code>double[]</code> array does not * contain at least two values */ private AnovaStats anovaStats(final Collection<double[]> categoryData) throws NullArgumentException, DimensionMismatchException { MathUtils.checkNotNull(categoryData); final Collection<SummaryStatistics> categoryDataSummaryStatistics = new ArrayList<SummaryStatistics>(categoryData.size()); // convert arrays to SummaryStatistics for (final double[] data : categoryData) { final SummaryStatistics dataSummaryStatistics = new SummaryStatistics(); categoryDataSummaryStatistics.add(dataSummaryStatistics); for (final double val : data) { dataSummaryStatistics.addValue(val); } } return anovaStats(categoryDataSummaryStatistics, false); }
Example 2
Source File: EmpiricalDistributionTest.java From astor with GNU General Public License v2.0 | 5 votes |
private void tstDoubleGen(double tolerance)throws Exception { empiricalDistribution2.load(dataArray); empiricalDistribution2.reSeed(1000); SummaryStatistics stats = new SummaryStatistics(); for (int i = 1; i < 1000; i++) { stats.addValue(empiricalDistribution2.getNextValue()); } Assert.assertEquals("mean", 5.069831575018909, stats.getMean(), tolerance); Assert.assertEquals("std dev", 1.0173699343977738, stats.getStandardDeviation(), tolerance); }
Example 3
Source File: RandomGeneratorAbstractTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testDoubleDirect() { SummaryStatistics sample = new SummaryStatistics(); final int N = 10000; for (int i = 0; i < N; ++i) { sample.addValue(generator.nextDouble()); } Assert.assertEquals("Note: This test will fail randomly about 1 in 100 times.", 0.5, sample.getMean(), FastMath.sqrt(N/12.0) * 2.576); Assert.assertEquals(1.0 / (2.0 * FastMath.sqrt(3.0)), sample.getStandardDeviation(), 0.01); }
Example 4
Source File: EdgeGrid16Full.java From cineast with MIT License | 5 votes |
@Override public void processSegment(SegmentContainer shot) { if (shot.getMostRepresentativeFrame() == VideoFrame.EMPTY_VIDEO_FRAME) { return; } if (!phandler.idExists(shot.getId())) { SummaryStatistics[] stats = new SummaryStatistics[256]; for (int i = 0; i < 256; ++i) { stats[i] = new SummaryStatistics(); } List<VideoFrame> videoFrames = shot.getVideoFrames(); List<Boolean> edgePixels = new ArrayList<>(); for (VideoFrame f : videoFrames) { MultiImage img = f.getImage(); edgePixels = EdgeImg.getEdgePixels(img, edgePixels); ArrayList<LinkedList<Boolean>> partition = GridPartitioner.partition(edgePixels, img.getWidth(), img.getHeight(), 16, 16); for (int i = 0; i < partition.size(); ++i) { LinkedList<Boolean> edge = partition.get(i); SummaryStatistics stat = stats[i]; for (boolean b : edge) { stat.addValue(b ? 1 : 0); } } } float[] result = new float[64]; for (int i = 0; i < 64; ++i) { result[i] = (float) stats[i].getMean(); } persist(shot.getId(), new FloatVectorImpl(result)); } }
Example 5
Source File: Matches.java From dungeon with BSD 3-Clause "New" or "Revised" License | 5 votes |
private static double calculateSimilarity(String[] nameWords, String[] tokens, boolean full) { if (!full || nameWords.length >= tokens.length) { int matches = countMatches(tokens, nameWords); SummaryStatistics statistics = new SummaryStatistics(); statistics.addValue(matches / (double) nameWords.length); statistics.addValue(matches / (double) tokens.length); return statistics.getMean(); } else { return 0.0; } }
Example 6
Source File: JacobianMatricesTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testAnalyticalDifferentiation() throws MaxCountExceededException, DimensionMismatchException, NumberIsTooSmallException, NoBracketingException, UnknownParameterException, MismatchedEquations { AbstractIntegrator integ = new DormandPrince54Integrator(1.0e-8, 100.0, new double[] { 1.0e-4, 1.0e-4 }, new double[] { 1.0e-4, 1.0e-4 }); SummaryStatistics residualsP0 = new SummaryStatistics(); SummaryStatistics residualsP1 = new SummaryStatistics(); for (double b = 2.88; b < 3.08; b += 0.001) { Brusselator brusselator = new Brusselator(b); double[] z = { 1.3, b }; double[][] dZdZ0 = new double[2][2]; double[] dZdP = new double[2]; JacobianMatrices jacob = new JacobianMatrices(brusselator, Brusselator.B); jacob.addParameterJacobianProvider(brusselator); jacob.setInitialParameterJacobian(Brusselator.B, new double[] { 0.0, 1.0 }); ExpandableStatefulODE efode = new ExpandableStatefulODE(brusselator); efode.setTime(0); efode.setPrimaryState(z); jacob.registerVariationalEquations(efode); integ.setMaxEvaluations(5000); integ.integrate(efode, 20.0); jacob.getCurrentMainSetJacobian(dZdZ0); jacob.getCurrentParameterJacobian(Brusselator.B, dZdP); // Assert.assertEquals(5000, integ.getMaxEvaluations()); // Assert.assertTrue(integ.getEvaluations() > 350); // Assert.assertTrue(integ.getEvaluations() < 510); residualsP0.addValue(dZdP[0] - brusselator.dYdP0()); residualsP1.addValue(dZdP[1] - brusselator.dYdP1()); } Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) < 0.014); Assert.assertTrue(residualsP0.getStandardDeviation() < 0.003); Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) < 0.05); Assert.assertTrue(residualsP1.getStandardDeviation() < 0.01); }
Example 7
Source File: EmpiricalDistribution.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override public void computeStats() throws IOException { String str = null; double val = 0.0; sampleStats = new SummaryStatistics(); while ((str = inputStream.readLine()) != null) { val = Double.valueOf(str).doubleValue(); sampleStats.addValue(val); } inputStream.close(); inputStream = null; }
Example 8
Source File: VolatilityDayComputer.java From RipplePower with Apache License 2.0 | 5 votes |
public static double computePriceChangeSTD(double[] open, double[] close) { SummaryStatistics stats = new SummaryStatistics(); for (int i = 0; i < open.length; i++) { stats.addValue(close[i] - open[i]); } return stats.getStandardDeviation(); }
Example 9
Source File: EmpiricalDistribution.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override public void computeStats() throws IOException { String str = null; double val = 0.0; sampleStats = new SummaryStatistics(); while ((str = inputStream.readLine()) != null) { val = Double.parseDouble(str); sampleStats.addValue(val); } inputStream.close(); inputStream = null; }
Example 10
Source File: RandomGeneratorAbstractTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testDoubleDirect() { SummaryStatistics sample = new SummaryStatistics(); final int N = 10000; for (int i = 0; i < N; ++i) { sample.addValue(generator.nextDouble()); } Assert.assertEquals("Note: This test will fail randomly about 1 in 100 times.", 0.5, sample.getMean(), FastMath.sqrt(N/12.0) * 2.576); Assert.assertEquals(1.0 / (2.0 * FastMath.sqrt(3.0)), sample.getStandardDeviation(), 0.01); }
Example 11
Source File: EmpiricalDistribution.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override public void computeBinStats() throws IOException { for (int i = 0; i < inputArray.length; i++) { SummaryStatistics stats = binStats.get(findBin(inputArray[i])); stats.addValue(inputArray[i]); } }
Example 12
Source File: EstimateRepairability.java From BART with MIT License | 5 votes |
private void computeAverageRepairabilityForVioGenQueries(Map<VioGenQuery, List<VioGenQueryCellChange>> changesForQueryMap) { for (VioGenQuery vioGenQuery : changesForQueryMap.keySet()) { RepairabilityStats repairabilityStats = new RepairabilityStats(); SummaryStatistics stats = new SummaryStatistics(); List<VioGenQueryCellChange> changesForQuery = changesForQueryMap.get(vioGenQuery); for (VioGenQueryCellChange change : changesForQuery) { stats.addValue(change.getRepairability()); } repairabilityStats.setMean(stats.getMean()); double confidenceInterval = calcMeanCI(stats, 0.95); repairabilityStats.setConfidenceInterval(confidenceInterval); if (logger.isInfoEnabled()) logger.info("Repairability for query " + vioGenQuery.toShortString() + ": " + repairabilityStats); ErrorGeneratorStats.getInstance().getVioGenQueriesRepairability().put(vioGenQuery, repairabilityStats); } }
Example 13
Source File: EstimateRepairability.java From BART with MIT License | 5 votes |
private void computeAverageRepairabilityForVioDependencies(Map<Dependency, List<VioGenQueryCellChange>> changes) { for (Dependency dependency : changes.keySet()) { RepairabilityStats repairabilityStats = new RepairabilityStats(); SummaryStatistics stats = new SummaryStatistics(); List<VioGenQueryCellChange> changesForQuery = changes.get(dependency); for (VioGenQueryCellChange change : changesForQuery) { stats.addValue(change.getRepairability()); } repairabilityStats.setMean(stats.getMean()); double confidenceInterval = calcMeanCI(stats, 0.95); repairabilityStats.setConfidenceInterval(confidenceInterval); if (logger.isInfoEnabled()) logger.info("Repairability for query " + dependency.getId() + ": " + repairabilityStats); ErrorGeneratorStats.getInstance().getDependencyRepairability().put(dependency, repairabilityStats); } }
Example 14
Source File: JacobianMatricesTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testAnalyticalDifferentiation() { AbstractIntegrator integ = new DormandPrince54Integrator(1.0e-8, 100.0, new double[] { 1.0e-4, 1.0e-4 }, new double[] { 1.0e-4, 1.0e-4 }); SummaryStatistics residualsP0 = new SummaryStatistics(); SummaryStatistics residualsP1 = new SummaryStatistics(); for (double b = 2.88; b < 3.08; b += 0.001) { Brusselator brusselator = new Brusselator(b); double[] z = { 1.3, b }; double[][] dZdZ0 = new double[2][2]; double[] dZdP = new double[2]; JacobianMatrices jacob = new JacobianMatrices(brusselator, Brusselator.B); jacob.addParameterJacobianProvider(brusselator); jacob.setInitialParameterJacobian(Brusselator.B, new double[] { 0.0, 1.0 }); ExpandableStatefulODE efode = new ExpandableStatefulODE(brusselator); efode.setTime(0); efode.setPrimaryState(z); jacob.registerVariationalEquations(efode); integ.setMaxEvaluations(5000); integ.integrate(efode, 20.0); jacob.getCurrentMainSetJacobian(dZdZ0); jacob.getCurrentParameterJacobian(Brusselator.B, dZdP); // Assert.assertEquals(5000, integ.getMaxEvaluations()); // Assert.assertTrue(integ.getEvaluations() > 350); // Assert.assertTrue(integ.getEvaluations() < 510); residualsP0.addValue(dZdP[0] - brusselator.dYdP0()); residualsP1.addValue(dZdP[1] - brusselator.dYdP1()); } Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) < 0.014); Assert.assertTrue(residualsP0.getStandardDeviation() < 0.003); Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) < 0.05); Assert.assertTrue(residualsP1.getStandardDeviation() < 0.01); }
Example 15
Source File: TTestTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Before public void setUp() { tooShortStats = new SummaryStatistics(); tooShortStats.addValue(0d); }
Example 16
Source File: TTestTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Before public void setUp() { tooShortStats = new SummaryStatistics(); tooShortStats.addValue(0d); }
Example 17
Source File: JacobianMatricesTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testInternalDifferentiation() { AbstractIntegrator integ = new DormandPrince54Integrator(1.0e-8, 100.0, new double[] { 1.0e-4, 1.0e-4 }, new double[] { 1.0e-4, 1.0e-4 }); double hP = 1.0e-12; double hY = 1.0e-12; SummaryStatistics residualsP0 = new SummaryStatistics(); SummaryStatistics residualsP1 = new SummaryStatistics(); for (double b = 2.88; b < 3.08; b += 0.001) { ParamBrusselator brusselator = new ParamBrusselator(b); brusselator.setParameter(ParamBrusselator.B, b); double[] z = { 1.3, b }; double[][] dZdZ0 = new double[2][2]; double[] dZdP = new double[2]; JacobianMatrices jacob = new JacobianMatrices(brusselator, new double[] { hY, hY }, ParamBrusselator.B); jacob.setParameterizedODE(brusselator); jacob.setParameterStep(ParamBrusselator.B, hP); jacob.setInitialParameterJacobian(ParamBrusselator.B, new double[] { 0.0, 1.0 }); ExpandableStatefulODE efode = new ExpandableStatefulODE(brusselator); efode.setTime(0); efode.setPrimaryState(z); jacob.registerVariationalEquations(efode); integ.setMaxEvaluations(5000); integ.integrate(efode, 20.0); jacob.getCurrentMainSetJacobian(dZdZ0); jacob.getCurrentParameterJacobian(ParamBrusselator.B, dZdP); // Assert.assertEquals(5000, integ.getMaxEvaluations()); // Assert.assertTrue(integ.getEvaluations() > 1500); // Assert.assertTrue(integ.getEvaluations() < 2100); // Assert.assertEquals(4 * integ.getEvaluations(), integ.getEvaluations()); residualsP0.addValue(dZdP[0] - brusselator.dYdP0()); residualsP1.addValue(dZdP[1] - brusselator.dYdP1()); } Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) < 0.02); Assert.assertTrue(residualsP0.getStandardDeviation() < 0.003); Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) < 0.05); Assert.assertTrue(residualsP1.getStandardDeviation() < 0.01); }
Example 18
Source File: TestSimLargeCluster.java From lucene-solr with Apache License 2.0 | 4 votes |
public void benchmarkNodeLost() throws Exception { List<String> results = new ArrayList<>(); for (int wait : renard5x) { for (int delay : renard5x) { SummaryStatistics totalTime = new SummaryStatistics(); SummaryStatistics ignoredOurEvents = new SummaryStatistics(); SummaryStatistics ignoredOtherEvents = new SummaryStatistics(); SummaryStatistics startedOurEvents = new SummaryStatistics(); SummaryStatistics startedOtherEvents = new SummaryStatistics(); for (int i = 0; i < 5; i++) { if (cluster != null) { cluster.close(); } setUp(); setupTest(); long total = doTestNodeLost(wait, delay * 1000, 0); totalTime.addValue(total); // get event counts Map<String, Map<String, AtomicInteger>> counts = cluster.simGetEventCounts(); Map<String, AtomicInteger> map = counts.remove("node_lost_trigger"); startedOurEvents.addValue(map.getOrDefault("STARTED", ZERO).get()); ignoredOurEvents.addValue(map.getOrDefault("IGNORED", ZERO).get()); int otherStarted = 0; int otherIgnored = 0; for (Map<String, AtomicInteger> m : counts.values()) { otherStarted += m.getOrDefault("STARTED", ZERO).get(); otherIgnored += m.getOrDefault("IGNORED", ZERO).get(); } startedOtherEvents.addValue(otherStarted); ignoredOtherEvents.addValue(otherIgnored); } results.add(String.format(Locale.ROOT, "%d\t%d\t%4.0f\t%4.0f\t%4.0f\t%4.0f\t%6.0f\t%6.0f\t%6.0f\t%6.0f\t%6.0f", wait, delay, startedOurEvents.getMean(), ignoredOurEvents.getMean(), startedOtherEvents.getMean(), ignoredOtherEvents.getMean(), totalTime.getMin(), totalTime.getMax(), totalTime.getMean(), totalTime.getStandardDeviation(), totalTime.getVariance())); } } log.info("===== RESULTS ======"); log.info("waitFor\tdelay\tSTRT\tIGN\toSTRT\toIGN\tmin\tmax\tmean\tstdev\tvar"); if (log.isInfoEnabled()) { results.forEach(s -> log.info(s)); } }
Example 19
Source File: TTestTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Before public void setUp() { tooShortStats = new SummaryStatistics(); tooShortStats.addValue(0d); }