Java Code Examples for org.apache.hadoop.mapred.TextInputFormat#addInputPath()
The following examples show how to use
org.apache.hadoop.mapred.TextInputFormat#addInputPath() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TestZstandardCodec.java From parquet-mr with Apache License 2.0 | 6 votes |
private RunningJob runMapReduceJob(CompressionCodecName codec, JobConf jobConf, Configuration conf, Path parquetPath) throws IOException, ClassNotFoundException, InterruptedException { String writeSchema = "message example {\n" + "required int32 line;\n" + "required binary content;\n" + "}"; FileSystem fileSystem = parquetPath.getFileSystem(conf); fileSystem.delete(parquetPath, true); jobConf.setInputFormat(TextInputFormat.class); TextInputFormat.addInputPath(jobConf, inputPath); jobConf.setNumReduceTasks(0); jobConf.setOutputFormat(DeprecatedParquetOutputFormat.class); DeprecatedParquetOutputFormat.setCompression(jobConf, codec); DeprecatedParquetOutputFormat.setOutputPath(jobConf, parquetPath); DeprecatedParquetOutputFormat.setWriteSupportClass(jobConf, GroupWriteSupport.class); GroupWriteSupport.setSchema(MessageTypeParser.parseMessageType(writeSchema), jobConf); jobConf.setMapperClass(TestZstandardCodec.DumpMapper.class); return JobClient.runJob(jobConf); }
Example 2
Source File: HadoopMapredCompatWordCount.java From Flink-CEPplus with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: WordCount <input path> <result path>"); return; } final String inputPath = args[0]; final String outputPath = args[1]; final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // Set up the Hadoop Input Format HadoopInputFormat<LongWritable, Text> hadoopInputFormat = new HadoopInputFormat<LongWritable, Text>(new TextInputFormat(), LongWritable.class, Text.class, new JobConf()); TextInputFormat.addInputPath(hadoopInputFormat.getJobConf(), new Path(inputPath)); // Create a Flink job with it DataSet<Tuple2<LongWritable, Text>> text = env.createInput(hadoopInputFormat); DataSet<Tuple2<Text, LongWritable>> words = text.flatMap(new HadoopMapFunction<LongWritable, Text, Text, LongWritable>(new Tokenizer())) .groupBy(0).reduceGroup(new HadoopReduceCombineFunction<Text, LongWritable, Text, LongWritable>(new Counter(), new Counter())); // Set up Hadoop Output Format HadoopOutputFormat<Text, LongWritable> hadoopOutputFormat = new HadoopOutputFormat<Text, LongWritable>(new TextOutputFormat<Text, LongWritable>(), new JobConf()); hadoopOutputFormat.getJobConf().set("mapred.textoutputformat.separator", " "); TextOutputFormat.setOutputPath(hadoopOutputFormat.getJobConf(), new Path(outputPath)); // Output & Execute words.output(hadoopOutputFormat).setParallelism(1); env.execute("Hadoop Compat WordCount"); }
Example 3
Source File: HadoopMapredCompatWordCount.java From flink with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: WordCount <input path> <result path>"); return; } final String inputPath = args[0]; final String outputPath = args[1]; final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // Set up the Hadoop Input Format HadoopInputFormat<LongWritable, Text> hadoopInputFormat = new HadoopInputFormat<LongWritable, Text>(new TextInputFormat(), LongWritable.class, Text.class, new JobConf()); TextInputFormat.addInputPath(hadoopInputFormat.getJobConf(), new Path(inputPath)); // Create a Flink job with it DataSet<Tuple2<LongWritable, Text>> text = env.createInput(hadoopInputFormat); DataSet<Tuple2<Text, LongWritable>> words = text.flatMap(new HadoopMapFunction<LongWritable, Text, Text, LongWritable>(new Tokenizer())) .groupBy(0).reduceGroup(new HadoopReduceCombineFunction<Text, LongWritable, Text, LongWritable>(new Counter(), new Counter())); // Set up Hadoop Output Format HadoopOutputFormat<Text, LongWritable> hadoopOutputFormat = new HadoopOutputFormat<Text, LongWritable>(new TextOutputFormat<Text, LongWritable>(), new JobConf()); hadoopOutputFormat.getJobConf().set("mapred.textoutputformat.separator", " "); TextOutputFormat.setOutputPath(hadoopOutputFormat.getJobConf(), new Path(outputPath)); // Output & Execute words.output(hadoopOutputFormat).setParallelism(1); env.execute("Hadoop Compat WordCount"); }
Example 4
Source File: HadoopMapredCompatWordCount.java From flink with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: WordCount <input path> <result path>"); return; } final String inputPath = args[0]; final String outputPath = args[1]; final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // Set up the Hadoop Input Format HadoopInputFormat<LongWritable, Text> hadoopInputFormat = new HadoopInputFormat<LongWritable, Text>(new TextInputFormat(), LongWritable.class, Text.class, new JobConf()); TextInputFormat.addInputPath(hadoopInputFormat.getJobConf(), new Path(inputPath)); // Create a Flink job with it DataSet<Tuple2<LongWritable, Text>> text = env.createInput(hadoopInputFormat); DataSet<Tuple2<Text, LongWritable>> words = text.flatMap(new HadoopMapFunction<LongWritable, Text, Text, LongWritable>(new Tokenizer())) .groupBy(0).reduceGroup(new HadoopReduceCombineFunction<Text, LongWritable, Text, LongWritable>(new Counter(), new Counter())); // Set up Hadoop Output Format HadoopOutputFormat<Text, LongWritable> hadoopOutputFormat = new HadoopOutputFormat<Text, LongWritable>(new TextOutputFormat<Text, LongWritable>(), new JobConf()); hadoopOutputFormat.getJobConf().set("mapred.textoutputformat.separator", " "); TextOutputFormat.setOutputPath(hadoopOutputFormat.getJobConf(), new Path(outputPath)); // Output & Execute words.output(hadoopOutputFormat).setParallelism(1); env.execute("Hadoop Compat WordCount"); }
Example 5
Source File: WordCountWithHadoopOutputFormat.java From stratosphere with Apache License 2.0 | 5 votes |
@Override public Plan getPlan(String... args) { // parse job parameters int numSubTasks = (args.length > 0 ? Integer.parseInt(args[0]) : 1); String dataInput = (args.length > 1 ? args[1] : ""); String output = (args.length > 2 ? args[2] : ""); HadoopDataSource<LongWritable, Text> source = new HadoopDataSource<LongWritable, Text>( new TextInputFormat(), new JobConf(), "Input Lines"); TextInputFormat.addInputPath(source.getJobConf(), new Path(dataInput)); MapOperator mapper = MapOperator.builder(new TokenizeLine()) .input(source) .name("Tokenize Lines") .build(); ReduceOperator reducer = ReduceOperator.builder(CountWords.class, StringValue.class, 0) .input(mapper) .name("Count Words") .build(); HadoopDataSink<Text, IntWritable> out = new HadoopDataSink<Text, IntWritable>(new TextOutputFormat<Text, IntWritable>(),new JobConf(), "Hadoop TextOutputFormat", reducer, Text.class, IntWritable.class); TextOutputFormat.setOutputPath(out.getJobConf(), new Path(output)); Plan plan = new Plan(out, "Hadoop OutputFormat Example"); plan.setDefaultParallelism(numSubTasks); return plan; }
Example 6
Source File: WordCount.java From stratosphere with Apache License 2.0 | 5 votes |
@SuppressWarnings({ "rawtypes", "unchecked", "unused" }) @Override public Plan getPlan(String... args) { // parse job parameters int numSubTasks = (args.length > 0 ? Integer.parseInt(args[0]) : 1); String dataInput = (args.length > 1 ? args[1] : ""); String output = (args.length > 2 ? args[2] : ""); HadoopDataSource source = new HadoopDataSource(new TextInputFormat(), new JobConf(), "Input Lines"); TextInputFormat.addInputPath(source.getJobConf(), new Path(dataInput)); // Example with Wrapper Converter HadoopDataSource<LongWritable,Text> sourceHadoopType = new HadoopDataSource<LongWritable, Text>( new TextInputFormat(), new JobConf(), "Input Lines", new WritableWrapperConverter<LongWritable, Text>()); TextInputFormat.addInputPath(source.getJobConf(), new Path(dataInput)); MapOperator mapper = MapOperator.builder(new TokenizeLine()) .input(source) .name("Tokenize Lines") .build(); ReduceOperator reducer = ReduceOperator.builder(CountWords.class, StringValue.class, 0) .input(mapper) .name("Count Words") .build(); FileDataSink out = new FileDataSink(new CsvOutputFormat(), output, reducer, "Word Counts"); CsvOutputFormat.configureRecordFormat(out) .recordDelimiter('\n') .fieldDelimiter(' ') .field(StringValue.class, 0) .field(IntValue.class, 1); Plan plan = new Plan(out, "WordCount Example"); plan.setDefaultParallelism(numSubTasks); return plan; }