Java Code Examples for org.nd4j.linalg.api.ndarray.INDArray#castTo()
The following examples show how to use
org.nd4j.linalg.api.ndarray.INDArray#castTo() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: LossSquaredHinge.java From deeplearning4j with Apache License 2.0 | 6 votes |
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* y_hat is -1 or 1 hinge loss is max(0,1-y_hat*y) */ INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray scoreArr = output.muli(labels); //y*yhat scoreArr.rsubi(1.0); //1 - y*yhat if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; // 1 - y*yhat }
Example 2
Source File: RandomProjectionLSHTest.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testANNSearchReflexive() { rpLSH.makeIndex(inputs); int idx = (new Random(12345)).nextInt(100); INDArray row = inputs.getRow(idx).reshape(1, intDimensions); INDArray searchResults = rpLSH.search(row, 100); INDArray res = Nd4j.zeros(DataType.BOOL, searchResults.shape()); Nd4j.getExecutioner().exec(new BroadcastEqualTo(searchResults, row, res, -1)); res = res.castTo(DataType.FLOAT); assertEquals( String.format("Expected one search result to be the query %s, but found %s", row, searchResults), 1.0f, res.min(-1).maxNumber().floatValue(), 1e-3f); }
Example 3
Source File: CudnnBatchNormalizationHelper.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray getVarCache(DataType dataType) { INDArray ret; if(dataType == DataType.HALF){ INDArray vc = varCache.castTo(DataType.HALF); ret = vc.mul(vc).rdivi(1.0).subi(eps); } else { ret = varCache.mul(varCache).rdivi(1.0).subi(eps); } if(dataType == DataType.HALF){ //Buffer is FP32 return ret.castTo(DataType.HALF); } return ret; }
Example 4
Source File: LossMCXENT.java From deeplearning4j with Apache License 2.0 | 5 votes |
protected INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); if(activationFn instanceof ActivationSoftmax && softmaxClipEps > 0.0){ BooleanIndexing.replaceWhere(output, softmaxClipEps, Conditions.lessThan(softmaxClipEps)); BooleanIndexing.replaceWhere(output, 1.0-softmaxClipEps, Conditions.greaterThan(1.0-softmaxClipEps)); } INDArray scoreArr = Transforms.log(output, false).muli(labels); //Weighted loss function if (weights != null) { if (weights.length() != scoreArr.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + preOutput.size(1)); } scoreArr.muliRowVector(weights.castTo(scoreArr.dataType())); } if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 5
Source File: PythonNumpyJobTest.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testMultipleNumpyJobsParallel(){ PythonContextManager.deleteNonMainContexts(); String code1 =(dataType == DataType.BOOL)?"z = x":"z = x + y"; PythonJob job1 = new PythonJob("job1", code1, false); String code2 =(dataType == DataType.BOOL)?"z = y":"z = x - y"; PythonJob job2 = new PythonJob("job2", code2, false); List<PythonVariable> inputs = new ArrayList<>(); INDArray x = Nd4j.ones(dataType, 2, 3); INDArray y = Nd4j.zeros(dataType, 2, 3); INDArray z1 = (dataType == DataType.BOOL)?x:x.add(y); z1 = (dataType == DataType.BFLOAT16)? z1.castTo(DataType.FLOAT): z1; INDArray z2 = (dataType == DataType.BOOL)?y:x.sub(y); z2 = (dataType == DataType.BFLOAT16)? z2.castTo(DataType.FLOAT): z2; PythonType<INDArray> arrType = PythonTypes.get("numpy.ndarray"); inputs.add(new PythonVariable<>("x", arrType, x)); inputs.add(new PythonVariable<>("y", arrType, y)); List<PythonVariable> outputs = new ArrayList<>(); outputs.add(new PythonVariable<>("z", arrType)); job1.exec(inputs, outputs); assertEquals(z1, outputs.get(0).getValue()); job2.exec(inputs, outputs); assertEquals(z2, outputs.get(0).getValue()); }
Example 6
Source File: PythonNumpyBasicTest.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testConversion(){ INDArray arr = Nd4j.zeros(dataType, shape); PythonObject npArr = PythonTypes.convert(arr); INDArray arr2 = PythonTypes.<INDArray>getPythonTypeForPythonObject(npArr).toJava(npArr); if (dataType == DataType.BFLOAT16){ arr = arr.castTo(DataType.FLOAT); } Assert.assertEquals(arr,arr2); }
Example 7
Source File: JsonSerdeTests.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testNDArrayTextSerializer() throws Exception { for(char order : new char[]{'c', 'f'}) { Nd4j.factory().setOrder(order); for (DataType globalDT : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { Nd4j.setDefaultDataTypes(globalDT, globalDT); Nd4j.getRandom().setSeed(12345); INDArray in = Nd4j.rand(DataType.DOUBLE, 3, 4).muli(20).subi(10); val om = new ObjectMapper(); for (DataType dt : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF, DataType.LONG, DataType.INT, DataType.SHORT, DataType.BYTE, DataType.UBYTE, DataType.BOOL, DataType.UTF8}) { INDArray arr; if(dt == DataType.UTF8){ arr = Nd4j.create("aaaaa", "bbbb", "ccc", "dd", "e", "f", "g", "h", "i", "j", "k", "l").reshape('c', 3, 4); } else { arr = in.castTo(dt); } TestClass tc = new TestClass(arr); String s = om.writeValueAsString(tc); // System.out.println(dt); // System.out.println(s); // System.out.println("\n\n\n"); TestClass deserialized = om.readValue(s, TestClass.class); assertEquals(dt.toString(), tc, deserialized); } } } }
Example 8
Source File: LossHinge.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* gradient is 0 if yhaty is >= 1 else gradient is gradient of the loss function = (1-yhaty) wrt preOutput = -y*derivative_of_yhat wrt preout */ INDArray bitMaskRowCol = scoreArray(labels, preOutput, activationFn, mask); /* bit mask is 0 if 1-sigma(y*yhat) is neg bit mask is 1 if 1-sigma(y*yhat) is +ve */ BooleanIndexing.replaceWhere(bitMaskRowCol, 0.0, Conditions.lessThan(0.0)); BooleanIndexing.replaceWhere(bitMaskRowCol, 1.0, Conditions.greaterThan(0.0)); INDArray dLda = labels.neg().muli(bitMaskRowCol); if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - though buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation functions with parameters if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 9
Source File: LossL1.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray outSubLabels = output.sub(labels); INDArray dLda = Nd4j.getExecutioner().exec(new Sign(outSubLabels)); if (weights != null) { dLda.muliRowVector(weights.castTo(dLda.dataType())); } if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - but buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } //dL/dz INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation function param gradients if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 10
Source File: LossL2.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray dLda = output.subi(labels).muli(2); if (weights != null) { dLda.muliRowVector(weights.castTo(dLda.dataType())); } if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - but buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO handle activation function parameter gradients //Loss function with masking if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 11
Source File: HistoryProcessor.java From deeplearning4j with Apache License 2.0 | 5 votes |
private INDArray transform(INDArray raw) { long[] shape = raw.shape(); // before accessing the raw pointer, we need to make sure that array is actual on the host side Nd4j.getAffinityManager().ensureLocation(raw, AffinityManager.Location.HOST); Mat ocvmat = new Mat((int)shape[0], (int)shape[1], CV_32FC(3), raw.data().pointer()); Mat cvmat = new Mat(shape[0], shape[1], CV_8UC(3)); ocvmat.convertTo(cvmat, CV_8UC(3), 255.0, 0.0); cvtColor(cvmat, cvmat, COLOR_RGB2GRAY); Mat resized = new Mat(conf.getRescaledHeight(), conf.getRescaledWidth(), CV_8UC(1)); resize(cvmat, resized, new Size(conf.getRescaledWidth(), conf.getRescaledHeight())); // show(resized); // waitKP(); //Crop by croppingHeight, croppingHeight Mat cropped = resized.apply(new Rect(conf.getOffsetX(), conf.getOffsetY(), conf.getCroppingWidth(), conf.getCroppingHeight())); //System.out.println(conf.getCroppingWidth() + " " + cropped.data().asBuffer().array().length); INDArray out = null; try { out = new NativeImageLoader(conf.getCroppingHeight(), conf.getCroppingWidth()).asMatrix(cropped); } catch (IOException e) { e.printStackTrace(); } //System.out.println(out.shapeInfoToString()); out = out.reshape(1, conf.getCroppingHeight(), conf.getCroppingWidth()); INDArray compressed = out.castTo(DataType.UBYTE); return compressed; }
Example 12
Source File: LossMultiLabel.java From deeplearning4j with Apache License 2.0 | 4 votes |
private void calculate(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, INDArray scoreOutput, INDArray gradientOutput) { if (scoreOutput == null && gradientOutput == null) { throw new IllegalArgumentException("You have to provide at least one of scoreOutput or gradientOutput!"); } if (labels.size(1) != preOutput.size(1)) { throw new IllegalArgumentException( "Labels array numColumns (size(1) = " + labels.size(1) + ") does not match output layer" + " number of outputs (nOut = " + preOutput.size(1) + ") "); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype final INDArray postOutput = activationFn.getActivation(preOutput.dup(), true); final INDArray positive = labels; final INDArray negative = labels.eq(0.0).castTo(Nd4j.defaultFloatingPointType()); final INDArray normFactor = negative.sum(true,1).castTo(Nd4j.defaultFloatingPointType()).muli(positive.sum(true,1)); long examples = positive.size(0); for (int i = 0; i < examples; i++) { final INDArray locCfn = postOutput.getRow(i, true); final long[] shape = locCfn.shape(); final INDArray locPositive = positive.getRow(i, true); final INDArray locNegative = negative.getRow(i, true); final Double locNormFactor = normFactor.getDouble(i); final int outSetSize = locNegative.sumNumber().intValue(); if(outSetSize == 0 || outSetSize == locNegative.columns()){ if (scoreOutput != null) { scoreOutput.getRow(i, true).assign(0); } if (gradientOutput != null) { gradientOutput.getRow(i, true).assign(0); } }else { final INDArray operandA = Nd4j.ones(shape[1], shape[0]).mmul(locCfn); final INDArray operandB = operandA.transpose(); final INDArray pairwiseSub = Transforms.exp(operandA.sub(operandB)); final INDArray selection = locPositive.transpose().mmul(locNegative); final INDArray classificationDifferences = pairwiseSub.muli(selection).divi(locNormFactor); if (scoreOutput != null) { if (mask != null) { final INDArray perLabel = classificationDifferences.sum(0); LossUtil.applyMask(perLabel, mask.getRow(i, true)); perLabel.sum(scoreOutput.getRow(i, true), 0); } else { classificationDifferences.sum(scoreOutput.getRow(i, true), 0, 1); } } if (gradientOutput != null) { gradientOutput.getRow(i, true).assign(classificationDifferences.sum(true, 0).addi(classificationDifferences.sum(true,1).transposei().negi())); } } } if (gradientOutput != null) { gradientOutput.assign(activationFn.backprop(preOutput.dup(), gradientOutput).getFirst()); //multiply with masks, always if (mask != null) { LossUtil.applyMask(gradientOutput, mask); } } }
Example 13
Source File: LossMCXENT.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } INDArray grad; INDArray output = activationFn.getActivation(preOutput.dup(), true); labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype if (activationFn instanceof ActivationSoftmax) { if (mask != null && LossUtil.isPerOutputMasking(output, mask)) { throw new UnsupportedOperationException("Per output masking for MCXENT + softmax: not supported"); } //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } INDArray temp = labels.mulRowVector(weights.castTo(labels.dataType())); INDArray col = temp.sum(true,1); grad = output.mulColumnVector(col).sub(temp); } else { grad = output.subi(labels); } } else { INDArray dLda = output.rdivi(labels).negi(); grad = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation function with weights //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } grad.muliRowVector(weights.castTo(grad.dataType())); } } //Loss function with masking if (mask != null) { LossUtil.applyMask(grad, mask); } return grad; }
Example 14
Source File: DataBufferTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testAsBytes() { INDArray orig = Nd4j.linspace(DataType.INT, 0, 10, 1); for (DataType dt : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF, DataType.BFLOAT16, DataType.LONG, DataType.INT, DataType.SHORT, DataType.BYTE, DataType.BOOL, DataType.UINT64, DataType.UINT32, DataType.UINT16, DataType.UBYTE}) { INDArray arr = orig.castTo(dt); byte[] b = arr.data().asBytes(); //NOTE: BIG ENDIAN if(ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN)) { //Switch from big endian (as defined by asBytes which uses big endian) to little endian int w = dt.width(); if (w > 1) { int len = b.length / w; for (int i = 0; i < len; i++) { for (int j = 0; j < w / 2; j++) { byte temp = b[(i + 1) * w - j - 1]; b[(i + 1) * w - j - 1] = b[i * w + j]; b[i * w + j] = temp; } } } } INDArray arr2 = Nd4j.create(dt, arr.shape()); ByteBuffer bb = arr2.data().pointer().asByteBuffer(); bb.position(0); bb.put(b); Nd4j.getAffinityManager().tagLocation(arr2, AffinityManager.Location.HOST); assertEquals(arr.toString(), arr2.toString()); assertEquals(arr, arr2); //Sanity check on data buffer getters: DataBuffer db = arr.data(); DataBuffer db2 = arr2.data(); for( int i=0; i<10; i++ ){ assertEquals(db.getDouble(i), db2.getDouble(i), 0); assertEquals(db.getFloat(i), db2.getFloat(i), 0); assertEquals(db.getInt(i), db2.getInt(i), 0); assertEquals(db.getLong(i), db2.getLong(i), 0); assertEquals(db.getNumber(i), db2.getNumber(i)); } assertArrayEquals(db.getDoublesAt(0, 10), db2.getDoublesAt(0, 10), 0); assertArrayEquals(db.getFloatsAt(0, 10), db2.getFloatsAt(0, 10), 0); assertArrayEquals(db.getIntsAt(0, 10), db2.getIntsAt(0, 10)); assertArrayEquals(db.getLongsAt(0, 10), db2.getLongsAt(0, 10)); } }
Example 15
Source File: DTypeTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testLocallyConnected() { for (DataType globalDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { Nd4j.setDefaultDataTypes(globalDtype, globalDtype); for (DataType networkDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { assertEquals(globalDtype, Nd4j.dataType()); assertEquals(globalDtype, Nd4j.defaultFloatingPointType()); INDArray[] in = null; for (int test = 0; test < 2; test++) { String msg = "Global dtype: " + globalDtype + ", network dtype: " + networkDtype + ", test=" + test; ComputationGraphConfiguration.GraphBuilder b = new NeuralNetConfiguration.Builder() .dataType(networkDtype) .seed(123) .updater(new NoOp()) .weightInit(WeightInit.XAVIER) .convolutionMode(ConvolutionMode.Same) .graphBuilder(); INDArray label; switch (test) { case 0: b.addInputs("in") .addLayer("1", new LSTM.Builder().nOut(5).build(), "in") .addLayer("2", new LocallyConnected1D.Builder().kernelSize(2).nOut(4).build(), "1") .addLayer("out", new RnnOutputLayer.Builder().nOut(10).build(), "2") .setOutputs("out") .setInputTypes(InputType.recurrent(5, 2)); in = new INDArray[]{Nd4j.rand(networkDtype, 2, 5, 2)}; label = TestUtils.randomOneHotTimeSeries(2, 10, 2); break; case 1: b.addInputs("in") .addLayer("1", new ConvolutionLayer.Builder().kernelSize(2, 2).nOut(5).convolutionMode(ConvolutionMode.Same).build(), "in") .addLayer("2", new LocallyConnected2D.Builder().kernelSize(2, 2).nOut(5).build(), "1") .addLayer("out", new OutputLayer.Builder().nOut(10).build(), "2") .setOutputs("out") .setInputTypes(InputType.convolutional(8, 8, 1)); in = new INDArray[]{Nd4j.rand(networkDtype, 2, 1, 8, 8)}; label = TestUtils.randomOneHot(2, 10).castTo(networkDtype); break; default: throw new RuntimeException(); } ComputationGraph net = new ComputationGraph(b.build()); net.init(); INDArray out = net.outputSingle(in); assertEquals(msg, networkDtype, out.dataType()); Map<String, INDArray> ff = net.feedForward(in, false); for (Map.Entry<String, INDArray> e : ff.entrySet()) { if (e.getKey().equals("in")) continue; String s = msg + " - layer: " + e.getKey(); assertEquals(s, networkDtype, e.getValue().dataType()); } net.setInputs(in); net.setLabels(label); net.computeGradientAndScore(); net.fit(new MultiDataSet(in, new INDArray[]{label})); logUsedClasses(net); //Now, test mismatched dtypes for input/labels: for (DataType inputLabelDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { INDArray[] in2 = new INDArray[in.length]; for (int i = 0; i < in.length; i++) { in2[i] = in[i].castTo(inputLabelDtype); } INDArray label2 = label.castTo(inputLabelDtype); net.output(in2); net.setInputs(in2); net.setLabels(label2); net.computeGradientAndScore(); net.fit(new MultiDataSet(in2, new INDArray[]{label2})); } } } } }
Example 16
Source File: MaskedReductionUtil.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static INDArray maskedPoolingEpsilonTimeSeries(PoolingType poolingType, INDArray input, INDArray mask, INDArray epsilon2d, int pnorm) { if (input.rank() != 3) { throw new IllegalArgumentException("Expect rank 3 input activation array: got " + input.rank()); } if (mask.rank() != 2) { throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank()); } if (epsilon2d.rank() != 2) { throw new IllegalArgumentException("Expected rank 2 array for errors: got " + epsilon2d.rank()); } //Mask: [minibatch, tsLength] //Epsilon: [minibatch, vectorSize] mask = mask.castTo(input.dataType()); switch (poolingType) { case MAX: INDArray negInfMask = mask.rsub(1.0); BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0)); INDArray withInf = Nd4j.createUninitialized(input.dataType(), input.shape()); Nd4j.getExecutioner().exec(new BroadcastAddOp(input, negInfMask, withInf, 0, 2)); //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op INDArray isMax = Nd4j.exec(new IsMax(withInf, withInf.ulike(), 2))[0]; return Nd4j.getExecutioner().exec(new BroadcastMulOp(isMax, epsilon2d, isMax, 0, 1)); case AVG: case SUM: //if out = sum(in,dims) then dL/dIn = dL/dOut -> duplicate to each step and mask //if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut //With masking: N differs for different time series INDArray out = Nd4j.createUninitialized(input.dataType(), input.shape(), 'f'); //Broadcast copy op, then divide and mask to 0 as appropriate Nd4j.getExecutioner().exec(new BroadcastCopyOp(out, epsilon2d, out, 0, 1)); Nd4j.getExecutioner().exec(new BroadcastMulOp(out, mask, out, 0, 2)); if (poolingType == PoolingType.SUM) { return out; } INDArray nEachTimeSeries = mask.sum(1); //[minibatchSize,tsLength] -> [minibatchSize,1] Nd4j.getExecutioner().exec(new BroadcastDivOp(out, nEachTimeSeries, out, 0)); return out; case PNORM: //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0 INDArray masked2 = Nd4j.createUninitialized(input.dataType(), input.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(input, mask, masked2, 0, 2)); INDArray abs = Transforms.abs(masked2, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = Transforms.pow(abs.sum(2), 1.0 / pnorm); INDArray numerator; if (pnorm == 2) { numerator = input.dup(); } else { INDArray absp2 = Transforms.pow(Transforms.abs(input, true), pnorm - 2, false); numerator = input.mul(absp2); } INDArray denom = Transforms.pow(pNorm, pnorm - 1, false); denom.rdivi(epsilon2d); Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, 0, 1)); Nd4j.getExecutioner().exec(new BroadcastMulOp(numerator, mask, numerator, 0, 2)); //Apply mask return numerator; default: throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType); } }
Example 17
Source File: RegressionEvaluation.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public void eval(INDArray labelsArr, INDArray predictionsArr, INDArray maskArr) { Triple<INDArray,INDArray, INDArray> p = BaseEvaluation.reshapeAndExtractNotMasked(labelsArr, predictionsArr, maskArr, axis); INDArray labels = p.getFirst(); INDArray predictions = p.getSecond(); INDArray maskArray = p.getThird(); if(labels.dataType() != predictions.dataType()) labels = labels.castTo(predictions.dataType()); if (!initialized) { initialize((int) labels.size(1)); } //References for the calculations is this section: //https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm //https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient#For_a_sample //Doing online calculation of means, sum of squares, etc. if (columnNames.size() != labels.size(1) || columnNames.size() != predictions.size(1)) { throw new IllegalArgumentException( "Number of the columns of labels and predictions must match specification (" + columnNames.size() + "). Got " + labels.size(1) + " and " + predictions.size(1)); } if (maskArray != null) { //Handle per-output masking. We are assuming *binary* masks here labels = labels.mul(maskArray); predictions = predictions.mul(maskArray); } labelsSumPerColumn.addi(labels.sum(0).castTo(labelsSumPerColumn.dataType())); INDArray error = predictions.sub(labels); INDArray absErrorSum = Nd4j.getExecutioner().exec(new ASum(error, 0)); INDArray squaredErrorSum = error.mul(error).sum(0); sumAbsErrorsPerColumn.addi(absErrorSum.castTo(labelsSumPerColumn.dataType())); sumSquaredErrorsPerColumn.addi(squaredErrorSum.castTo(labelsSumPerColumn.dataType())); sumOfProducts.addi(labels.mul(predictions).sum(0).castTo(labelsSumPerColumn.dataType())); sumSquaredLabels.addi(labels.mul(labels).sum(0).castTo(labelsSumPerColumn.dataType())); sumSquaredPredicted.addi(predictions.mul(predictions).sum(0).castTo(labelsSumPerColumn.dataType())); val nRows = labels.size(0); INDArray newExampleCountPerColumn; if (maskArray == null) { newExampleCountPerColumn = exampleCountPerColumn.add(nRows); } else { newExampleCountPerColumn = exampleCountPerColumn.add(maskArray.sum(0).castTo(labelsSumPerColumn.dataType())); } currentMean.muliRowVector(exampleCountPerColumn).addi(labels.sum(0).castTo(labelsSumPerColumn.dataType())).diviRowVector(newExampleCountPerColumn); currentPredictionMean.muliRowVector(exampleCountPerColumn).addi(predictions.sum(0).castTo(labelsSumPerColumn.dataType())) .divi(newExampleCountPerColumn); exampleCountPerColumn = newExampleCountPerColumn; sumLabels.addi(labels.sum(0).castTo(labelsSumPerColumn.dataType())); }
Example 18
Source File: MaskedReductionUtil.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static INDArray maskedPoolingTimeSeries(PoolingType poolingType, INDArray toReduce, INDArray mask, int pnorm, DataType dataType) { if (toReduce.rank() != 3) { throw new IllegalArgumentException("Expect rank 3 array: got " + toReduce.rank()); } if (mask.rank() != 2) { throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank()); } toReduce = toReduce.castTo(dataType); mask = mask.castTo(dataType); //Sum pooling: easy. Multiply by mask, then sum as normal //Average pooling: as above, but do a broadcast element-wise divi by mask.sum(1) //Max pooling: set to -inf if mask is 0, then do max as normal switch (poolingType) { case MAX: INDArray negInfMask = mask.castTo(dataType).rsub(1.0); BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0)); INDArray withInf = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, 0, 2)); //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op return withInf.max(2); case AVG: case SUM: INDArray masked = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, 0, 2)); INDArray summed = masked.sum(2); if (poolingType == PoolingType.SUM) { return summed; } INDArray maskCounts = mask.sum(1); summed.diviColumnVector(maskCounts); return summed; case PNORM: //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0 INDArray masked2 = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, 0, 2)); INDArray abs = Transforms.abs(masked2, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = abs.sum(2); return Transforms.pow(pNorm, 1.0 / pnorm); default: throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType); } }
Example 19
Source File: DTypeTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testEmbeddingDtypes() { for (DataType globalDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { Nd4j.setDefaultDataTypes(globalDtype, globalDtype); for (DataType networkDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { for (boolean frozen : new boolean[]{false, true}) { for (int test = 0; test < 3; test++) { assertEquals(globalDtype, Nd4j.dataType()); assertEquals(globalDtype, Nd4j.defaultFloatingPointType()); String msg = "Global dtype: " + globalDtype + ", network dtype: " + networkDtype + ", test=" + test; ComputationGraphConfiguration.GraphBuilder conf = new NeuralNetConfiguration.Builder() .dataType(networkDtype) .seed(123) .updater(new NoOp()) .weightInit(new WeightInitDistribution(new UniformDistribution(-6, 6))) .graphBuilder() .addInputs("in") .setOutputs("out"); INDArray input; if (test == 0) { if (frozen) { conf.layer("0", new FrozenLayer(new EmbeddingLayer.Builder().nIn(5).nOut(5).build()), "in"); } else { conf.layer("0", new EmbeddingLayer.Builder().nIn(5).nOut(5).build(), "in"); } input = Nd4j.rand(networkDtype, 10, 1).muli(5).castTo(DataType.INT); conf.setInputTypes(InputType.feedForward(1)); } else if (test == 1) { if (frozen) { conf.layer("0", new FrozenLayer(new EmbeddingSequenceLayer.Builder().nIn(5).nOut(5).build()), "in"); } else { conf.layer("0", new EmbeddingSequenceLayer.Builder().nIn(5).nOut(5).build(), "in"); } conf.layer("gp", new GlobalPoolingLayer.Builder(PoolingType.PNORM).pnorm(2).poolingDimensions(2).build(), "0"); input = Nd4j.rand(networkDtype, 10, 1, 5).muli(5).castTo(DataType.INT); conf.setInputTypes(InputType.recurrent(1)); } else { conf.layer("0", new RepeatVector.Builder().repetitionFactor(5).nOut(5).build(), "in"); conf.layer("gp", new GlobalPoolingLayer.Builder(PoolingType.SUM).build(), "0"); input = Nd4j.rand(networkDtype, 10, 5); conf.setInputTypes(InputType.feedForward(5)); } conf.appendLayer("el", new ElementWiseMultiplicationLayer.Builder().nOut(5).build()) .appendLayer("ae", new AutoEncoder.Builder().nOut(5).build()) .appendLayer("prelu", new PReLULayer.Builder().nOut(5).inputShape(5).build()) .appendLayer("out", new OutputLayer.Builder().nOut(10).build()); ComputationGraph net = new ComputationGraph(conf.build()); net.init(); INDArray label = Nd4j.zeros(networkDtype, 10, 10); INDArray out = net.outputSingle(input); assertEquals(msg, networkDtype, out.dataType()); Map<String, INDArray> ff = net.feedForward(input, false); for (Map.Entry<String, INDArray> e : ff.entrySet()) { if (e.getKey().equals("in")) continue; String s = msg + " - layer: " + e.getKey(); assertEquals(s, networkDtype, e.getValue().dataType()); } net.setInput(0, input); net.setLabels(label); net.computeGradientAndScore(); net.fit(new DataSet(input, label)); logUsedClasses(net); //Now, test mismatched dtypes for input/labels: for (DataType inputLabelDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { INDArray in2 = input.castTo(inputLabelDtype); INDArray label2 = label.castTo(inputLabelDtype); net.output(in2); net.setInput(0, in2); net.setLabels(label2); net.computeGradientAndScore(); net.fit(new DataSet(in2, label2)); } } } } } }
Example 20
Source File: DTypeTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testAttentionDTypes() { for (DataType globalDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { Nd4j.setDefaultDataTypes(globalDtype, globalDtype); for (DataType networkDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { assertEquals(globalDtype, Nd4j.dataType()); assertEquals(globalDtype, Nd4j.defaultFloatingPointType()); String msg = "Global dtype: " + globalDtype + ", network dtype: " + networkDtype; int mb = 3; int nIn = 3; int nOut = 5; int tsLength = 4; int layerSize = 8; int numQueries = 6; INDArray in = Nd4j.rand(networkDtype, new long[]{mb, nIn, tsLength}); INDArray labels = TestUtils.randomOneHot(mb, nOut); MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() .dataType(networkDtype) .activation(Activation.TANH) .updater(new NoOp()) .weightInit(WeightInit.XAVIER) .list() .layer(new LSTM.Builder().nOut(layerSize).build()) .layer(new SelfAttentionLayer.Builder().nOut(8).nHeads(2).projectInput(true).build()) .layer(new LearnedSelfAttentionLayer.Builder().nOut(8).nHeads(2).nQueries(numQueries).projectInput(true).build()) .layer(new RecurrentAttentionLayer.Builder().nIn(layerSize).nOut(layerSize).nHeads(1).projectInput(false).hasBias(false).build()) .layer(new GlobalPoolingLayer.Builder().poolingType(PoolingType.MAX).build()) .layer(new OutputLayer.Builder().nOut(nOut).activation(Activation.SOFTMAX) .lossFunction(LossFunctions.LossFunction.MCXENT).build()) .setInputType(InputType.recurrent(nIn)) .build(); MultiLayerNetwork net = new MultiLayerNetwork(conf); net.init(); INDArray out = net.output(in); assertEquals(msg, networkDtype, out.dataType()); List<INDArray> ff = net.feedForward(in); for (int i = 0; i < ff.size(); i++) { String s = msg + " - layer " + (i - 1) + " - " + (i == 0 ? "input" : net.getLayer(i - 1).conf().getLayer().getClass().getSimpleName()); assertEquals(s, networkDtype, ff.get(i).dataType()); } net.setInput(in); net.setLabels(labels); net.computeGradientAndScore(); net.fit(new DataSet(in, labels)); logUsedClasses(net); //Now, test mismatched dtypes for input/labels: for (DataType inputLabelDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) { INDArray in2 = in.castTo(inputLabelDtype); INDArray label2 = labels.castTo(inputLabelDtype); net.output(in2); net.setInput(in2); net.setLabels(label2); net.computeGradientAndScore(); net.fit(new DataSet(in2, label2)); } } } }