Java Code Examples for weka.core.converters.ConverterUtils.DataSource#read()
The following examples show how to use
weka.core.converters.ConverterUtils.DataSource#read() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TrainTestSplit.java From meka with GNU General Public License v3.0 | 6 votes |
public static void main(String[] args) throws Exception { if (args.length != 2) throw new IllegalArgumentException("Required arguments: <dataset> <percentage>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); double percentage = Double.parseDouble(args[1]); int trainSize = (int) (data.numInstances() * percentage / 100.0); Instances train = new Instances(data, 0, trainSize); Instances test = new Instances(data, trainSize, data.numInstances() - trainSize); System.out.println("Build BR classifier on " + percentage + "%"); BR classifier = new BR(); // further configuration of classifier classifier.buildClassifier(train); System.out.println("Evaluate BR classifier on " + (100.0 - percentage) + "%"); String top = "PCut1"; String vop = "3"; Result result = Evaluation.evaluateModel(classifier, train, test, top, vop); System.out.println(result); }
Example 2
Source File: CrossValidate.java From meka with GNU General Public License v3.0 | 6 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); int numFolds = 10; System.out.println("Cross-validate BR classifier using " + numFolds + " folds"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, numFolds, top, vop); System.out.println(result); }
Example 3
Source File: MicroCurve.java From meka with GNU General Public License v3.0 | 6 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("Micro curve"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); Instances performance = (Instances) result.getMeasurement(CURVE_DATA_MICRO); try { VisualizePanel panel = createPanel(performance); frame.getContentPane().add(panel, BorderLayout.CENTER); } catch (Exception ex) { System.err.println("Failed to create plot!"); ex.printStackTrace(); } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }
Example 4
Source File: PrepareClassAttributes.java From meka with GNU General Public License v3.0 | 6 votes |
public static void main(String[] args) throws Exception { if (args.length != 3) throw new IllegalArgumentException("Required parameters: <input> <attribute_indices> <output>"); System.out.println("Loading input data: " + args[0]); Instances input = DataSource.read(args[0]); System.out.println("Applying filter using indices: " + args[1]); MekaClassAttributes filter = new MekaClassAttributes(); filter.setAttributeIndices(args[1]); filter.setInputFormat(input); Instances output = Filter.useFilter(input, filter); System.out.println("Saving filtered data to: " + args[2]); ArffSaver saver = new ArffSaver(); saver.setFile(new File(args[2])); DataSink.write(saver, output); }
Example 5
Source File: MekaSearch.java From meka with GNU General Public License v3.0 | 6 votes |
/** * Loads test data, if required. * * @param data the current training data * @throws Exception if test sets are not compatible with training data */ protected void loadTestData(Instances data) throws Exception { String msg; m_InitialSpaceTestInst = null; if (m_InitialSpaceTestSet.exists() && !m_InitialSpaceTestSet.isDirectory()) { m_InitialSpaceTestInst = DataSource.read(m_InitialSpaceTestSet.getAbsolutePath()); m_InitialSpaceTestInst.setClassIndex(data.classIndex()); msg = data.equalHeadersMsg(m_InitialSpaceTestInst); if (msg != null) throw new IllegalArgumentException("Test set for initial space not compatible with training dta:\n" + msg); m_InitialSpaceTestInst.deleteWithMissingClass(); log("Using test set for initial space: " + m_InitialSpaceTestSet); } m_SubsequentSpaceTestInst = null; if (m_SubsequentSpaceTestSet.exists() && !m_SubsequentSpaceTestSet.isDirectory()) { m_SubsequentSpaceTestInst = DataSource.read(m_SubsequentSpaceTestSet.getAbsolutePath()); m_SubsequentSpaceTestInst.setClassIndex(data.classIndex()); msg = data.equalHeadersMsg(m_SubsequentSpaceTestInst); if (msg != null) throw new IllegalArgumentException("Test set for subsequent sub-spaces not compatible with training dta:\n" + msg); m_SubsequentSpaceTestInst.deleteWithMissingClass(); log("Using test set for subsequent sub-spaces: " + m_InitialSpaceTestSet); } }
Example 6
Source File: WekaComponentInstanceEvaluator.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
private Instances loadDataset(final String path) { Instances dataset = null; try { dataset = DataSource.read(path); if (dataset.classIndex() == -1) { dataset.setClassIndex(dataset.numAttributes() - 1); } } catch (Exception e) { this.logger.error(e.getMessage()); } return dataset; }
Example 7
Source File: ExportPredictionsOnTestSet.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 3) throw new IllegalArgumentException("Required arguments: <train> <test> <output>"); System.out.println("Loading train: " + args[0]); Instances train = DataSource.read(args[0]); MLUtils.prepareData(train); System.out.println("Loading test: " + args[1]); Instances test = DataSource.read(args[1]); MLUtils.prepareData(test); // compatible? String msg = train.equalHeadersMsg(test); if (msg != null) throw new IllegalStateException(msg); System.out.println("Build BR classifier on " + args[0]); BR classifier = new BR(); // further configuration of classifier classifier.buildClassifier(train); System.out.println("Evaluate BR classifier on " + args[1]); String top = "PCut1"; String vop = "3"; Result result = Evaluation.evaluateModel(classifier, train, test, top, vop); System.out.println(result); System.out.println("Saving predictions test set to " + args[2]); Instances performance = Result.getPredictionsAsInstances(result); DataSink.write(args[2], performance); }
Example 8
Source File: TrainTestSet.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 2) throw new IllegalArgumentException("Required arguments: <train> <test>"); System.out.println("Loading train: " + args[0]); Instances train = DataSource.read(args[0]); MLUtils.prepareData(train); System.out.println("Loading test: " + args[1]); Instances test = DataSource.read(args[1]); MLUtils.prepareData(test); // compatible? String msg = train.equalHeadersMsg(test); if (msg != null) throw new IllegalStateException(msg); System.out.println("Build BR classifier on " + args[0]); BR classifier = new BR(); // further configuration of classifier classifier.buildClassifier(train); System.out.println("Evaluate BR classifier on " + args[1]); String top = "PCut1"; String vop = "3"; Result result = Evaluation.evaluateModel(classifier, train, test, top, vop); System.out.println(result); }
Example 9
Source File: TrainAndPredict.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 2) throw new IllegalArgumentException("Required arguments: <train> <predict>"); System.out.println("Loading train: " + args[0]); Instances train = DataSource.read(args[0]); MLUtils.prepareData(train); System.out.println("Loading predict: " + args[1]); Instances predict = DataSource.read(args[1]); MLUtils.prepareData(predict); // compatible? String msg = train.equalHeadersMsg(predict); if (msg != null) throw new IllegalStateException(msg); System.out.println("Build BR classifier on " + args[0]); BR classifier = new BR(); // further configuration of classifier classifier.buildClassifier(train); System.out.println("Use BR classifier on " + args[1]); for (int i = 0; i < predict.numInstances(); i++) { double[] dist = classifier.distributionForInstance(predict.instance(i)); System.out.println((i+1) + ": " + Utils.arrayToString(dist)); } }
Example 10
Source File: JustBuild.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Build BR classifier"); BR classifier = new BR(); // further configuration of classifier classifier.buildClassifier(data); }
Example 11
Source File: ROC.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("ROC"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); JTabbedPane tabbed = new JTabbedPane(); frame.getContentPane().add(tabbed, BorderLayout.CENTER); Instances[] curves = (Instances[]) result.getMeasurement(CURVE_DATA); for (int i = 0; i < curves.length; i++) { try { ThresholdVisualizePanel panel = createPanel(curves[i], "Label " + i); tabbed.addTab("" + i, panel); } catch (Exception ex) { System.err.println("Failed to create plot for label " + i); ex.printStackTrace(); } } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }
Example 12
Source File: MacroCurve.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("Macro curve"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); Instances performance = (Instances) result.getMeasurement(CURVE_DATA_MACRO); try { VisualizePanel panel = createPanel(performance); frame.getContentPane().add(panel, BorderLayout.CENTER); } catch (Exception ex) { System.err.println("Failed to create plot!"); ex.printStackTrace(); } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }
Example 13
Source File: PrecisionRecall.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("Precision-recall"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); JTabbedPane tabbed = new JTabbedPane(); frame.getContentPane().add(tabbed, BorderLayout.CENTER); Instances[] curves = (Instances[]) result.getMeasurement(CURVE_DATA); for (int i = 0; i < curves.length; i++) { try { ThresholdVisualizePanel panel = createPanel(curves[i], "Label " + i); tabbed.addTab("" + i, panel); } catch (Exception ex) { System.err.println("Failed to create plot for label " + i); ex.printStackTrace(); } } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }
Example 14
Source File: EvaluationTests.java From meka with GNU General Public License v3.0 | 5 votes |
public static Instances loadInstances(String fn) { try { Instances D = DataSource.read("src/test/resources/" + fn); MLUtils.prepareData(D); return D; } catch(Exception e) { System.err.println(""); e.printStackTrace(); System.exit(1); } return null; }