Java Code Examples for org.opengis.referencing.operation.Matrix#setElement()
The following examples show how to use
org.opengis.referencing.operation.Matrix#setElement() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: VariableWrapper.java From sis with Apache License 2.0 | 6 votes |
/** * Sets the scale and offset coefficients in the given "grid to CRS" transform if possible. * This method is invoked only for variables that represent a coordinate system axis. */ @Override protected boolean trySetTransform(final Matrix gridToCRS, final int srcDim, final int tgtDim, final Vector values) throws IOException, DataStoreException { if (variable instanceof CoordinateAxis1D) { final CoordinateAxis1D axis = (CoordinateAxis1D) variable; if (axis.isRegular()) { final double start = axis.getStart(); final double increment = axis.getIncrement(); if (start != 0 || increment != 0) { gridToCRS.setElement(tgtDim, srcDim, increment); gridToCRS.setElement(tgtDim, gridToCRS.getNumCol() - 1, start); return true; } /* * The UCAR library sometime left those information uninitialized. * If it seems to be the case, fallback on our own code. */ } } return super.trySetTransform(gridToCRS, srcDim, tgtDim, values); }
Example 2
Source File: TensorValues.java From sis with Apache License 2.0 | 6 votes |
/** * Creates a matrix from this group of parameters. * This operation is allowed only for tensors of {@linkplain TensorParameters#rank() rank} 2. * * @return a matrix created from this group of parameters. */ final Matrix toMatrix() { final int numRow = dimensions[0].intValue(); final int numCol = dimensions[1].intValue(); final Matrix matrix = Matrices.createDiagonal(numRow, numCol); if (values != null) { for (int j=0; j<numRow; j++) { final ParameterValue<?>[] row = (ParameterValue<?>[]) values[j]; if (row != null) { for (int i=0; i<numCol; i++) { final ParameterValue<?> element = row[i]; if (element != null) { matrix.setElement(j, i, element.doubleValue()); } } } } } return matrix; }
Example 3
Source File: TensorValuesTest.java From sis with Apache License 2.0 | 6 votes |
/** * Tests {@link TensorParameters#ALPHANUM} formatting. * <ul> * <li>Group name shall be {@code "Affine parametric transformation"}.</li> * <li>No {@code "num_row"} or {@code "num_col"} parameters if their value is equals to 3.</li> * <li>Parameter names shall be of the form {@code "A0"}.</li> * <li>Identifiers present, but only for A0-A2 and B0-B2.</li> * </ul> */ @Test public void testWKT2() { final Matrix matrix = Matrices.createIdentity(3); matrix.setElement(0,2, 4); matrix.setElement(1,0, -2); matrix.setElement(2,2, 7); final ParameterValueGroup group = TensorParameters.ALPHANUM.createValueGroup( singletonMap(TensorValues.NAME_KEY, Affine.NAME), matrix); validate(group); assertWktEquals( "PARAMETERGROUP[“Affine parametric transformation”,\n" + " PARAMETER[“A2”, 4.0, ID[“EPSG”, 8625]],\n" + " PARAMETER[“B0”, -2.0, ID[“EPSG”, 8639]],\n" + " PARAMETER[“C2”, 7.0]]", group); }
Example 4
Source File: TensorValuesTest.java From sis with Apache License 2.0 | 6 votes |
/** * Tests {@link TensorParameters#WKT1} formatting. * <ul> * <li>Group name shall be {@code "Affine"}.</li> * <li>Parameters {@code "num_row"} and {@code "num_col"} are mandatory.</li> * <li>Parameter names shall be of the form {@code "elt_0_0"}.</li> * <li>No identifier.</li> * </ul> */ @Test public void testWKT1() { final Matrix matrix = Matrices.createIdentity(3); matrix.setElement(0,2, 4); matrix.setElement(1,0, -2); matrix.setElement(2,2, 7); final ParameterValueGroup group = TensorParameters.WKT1.createValueGroup( singletonMap(TensorValues.NAME_KEY, Constants.AFFINE), matrix); validate(group); assertWktEquals( "PARAMETERGROUP[“Affine”,\n" + " PARAMETER[“num_row”, 3],\n" + // Shall be shown even if equals to the default value. " PARAMETER[“num_col”, 3],\n" + " PARAMETER[“elt_0_2”, 4.0],\n" + " PARAMETER[“elt_1_0”, -2.0],\n" + " PARAMETER[“elt_2_2”, 7.0]]", group); }
Example 5
Source File: TensorParametersTest.java From sis with Apache License 2.0 | 6 votes |
/** * Tests {@link TensorParameters#createValueGroup(Map, Matrix)} and its converse * {@link TensorParameters#toMatrix(ParameterValueGroup)}. */ @Test @DependsOnMethod("testGetAllDescriptors") public void testMatrixConversion() { final int size = StrictMath.min(6, TensorParameters.CACHE_SIZE); final Random random = TestUtilities.createRandomNumberGenerator(); for (int numRow = 2; numRow <= size; numRow++) { for (int numCol = 2; numCol <= size; numCol++) { final Matrix matrix = Matrices.createZero(numRow, numCol); for (int j=0; j<numRow; j++) { for (int i=0; i<numCol; i++) { matrix.setElement(j, i, 200*random.nextDouble() - 100); } } final ParameterValueGroup group = param.createValueGroup( singletonMap(ParameterDescriptor.NAME_KEY, "Test"), matrix); assertEquals(NUM_ROW, numRow, group.parameter(NUM_ROW).intValue()); assertEquals(NUM_COL, numCol, group.parameter(NUM_COL).intValue()); assertEquals("elements", matrix, param.toMatrix(group)); assertEquals("elements", matrix, param.toMatrix(new ParameterValueGroupWrapper(group))); } } }
Example 6
Source File: SubOperationInfo.java From sis with Apache License 2.0 | 5 votes |
/** * Returns a matrix for an affine transform from all source coordinates to the coordinates of the * source components selected for participating in the coordinate operation. * * @param sourceDimensions number of dimension of the source {@code CompoundCRS}. * @param selectedDimensions number of source dimensions needed by the coordinate operations. * @param selected all {@code SourceComponent} instances needed for the target {@code CompoundCRS}. */ static Matrix sourceToSelected(final int sourceDimensions, final int selectedDimensions, final SubOperationInfo[] selected) { final Matrix select = Matrices.createZero(selectedDimensions + 1, sourceDimensions + 1); select.setElement(selectedDimensions, sourceDimensions, 1); int j = 0; for (final SubOperationInfo component : selected) { for (int i=component.startAtDimension; i<component.endAtDimension; i++) { select.setElement(j++, i, 1); } } return select; }
Example 7
Source File: PixelTranslation.java From sis with Apache License 2.0 | 5 votes |
/** * Converts a math transform from a "pixel orientation" convention to another "pixel orientation" convention. * This method concatenates −½, 0 or +½ translations on <em>two</em> dimensions before the given transform. * The given transform can have any number of input and output dimensions, but only two of them will be converted. * * <div class="note"><b>Example:</b> * if a given {@code gridToCRS} transform was mapping the upper-left corner to "real world" coordinates, then a call to * <code>translate(gridToCRS, {@link PixelOrientation#UPPER_LEFT UPPER_LEFT}, {@link PixelOrientation#CENTER CENTER}, 0, 1)</code> * will return a new transform translating grid coordinates by +0.5 before to apply the given {@code gridToCRS} transform. * See example in above {@link #translate(MathTransform, PixelInCell, PixelInCell) translate} method for more details.</div> * * If the given {@code gridToCRS} is null, then this method ignores all other arguments and returns {@code null}. * Otherwise {@code current} and {@code desired} arguments must be non-null. * * @param gridToCRS a math transform from <cite>pixel</cite> coordinates to any CRS, or {@code null}. * @param current the pixel orientation of the given {@code gridToCRS} transform. * @param desired the pixel orientation of the desired transform. * @param xDimension the dimension of <var>x</var> coordinates (pixel columns). Often 0. * @param yDimension the dimension of <var>y</var> coordinates (pixel rows). Often 1. * @return the translation from {@code current} to {@code desired}, or {@code null} if {@code gridToCRS} was null. * @throws IllegalArgumentException if {@code current} or {@code desired} is not a known code list value. */ public static MathTransform translate(final MathTransform gridToCRS, final PixelOrientation current, final PixelOrientation desired, final int xDimension, final int yDimension) { if (gridToCRS == null || desired.equals(current)) { return gridToCRS; } final int dimension = gridToCRS.getSourceDimensions(); if (xDimension < 0 || xDimension >= dimension) { throw illegalDimension("xDimension", xDimension); } if (yDimension < 0 || yDimension >= dimension) { throw illegalDimension("yDimension", yDimension); } if (xDimension == yDimension) { throw illegalDimension("xDimension", "yDimension"); } final PixelTranslation source = getPixelTranslation(current); final PixelTranslation target = getPixelTranslation(desired); final double dx = target.dx - source.dx; final double dy = target.dy - source.dy; MathTransform mt; if (dimension == 2 && (xDimension | yDimension) == 1 && dx == dy && Math.abs(dx) == 0.5) { final int ci = (dx >= 0) ? 3 : 2; synchronized (translations) { mt = translations[ci]; if (mt == null) { mt = MathTransforms.uniformTranslation(dimension, dx); translations[ci] = mt; } } } else { final Matrix matrix = Matrices.createIdentity(dimension + 1); matrix.setElement(xDimension, dimension, dx); matrix.setElement(yDimension, dimension, dy); mt = MathTransforms.linear(matrix); } return MathTransforms.concatenate(mt, gridToCRS); }
Example 8
Source File: GridDerivation.java From sis with Apache License 2.0 | 5 votes |
/** * Applies a subsampling on the grid geometry to build. * This method can be invoked as an alternative to {@code subgrid(…)} methods if only the resolution needs to be changed. * The {@linkplain GridGeometry#getExtent() extent} of the {@linkplain #build() built} grid geometry will be derived * from {@link #getIntersection()} as below for each dimension <var>i</var>: * * <ul> * <li>The {@linkplain GridExtent#getLow(int) low} is divided by {@code subsamplings[i]}, rounded toward zero.</li> * <li>The {@linkplain GridExtent#getSize(int) size} is divided by {@code subsamplings[i]}, rounded toward zero.</li> * <li>The {@linkplain GridExtent#getHigh(int) high} is recomputed from above low and size.</li> * </ul> * * The {@linkplain GridGeometry#getGridToCRS(PixelInCell) grid to CRS} transform is scaled accordingly * in order to map approximately to the same {@linkplain GridGeometry#getEnvelope() envelope}. * * @param subsamplings the subsampling to apply on each grid dimension. All values shall be greater than zero. * If the array length is shorter than the number of dimensions, missing values are assumed to be 1. * @return {@code this} for method call chaining. * @throws IllegalStateException if a subsampling has already been set, * for example by a call to {@link #subgrid(Envelope, double...) subgrid(…)}. * * @see #subgrid(GridGeometry) * @see #getSubsamplings() * @see GridExtent#subsample(int...) */ public GridDerivation subsample(final int... subsamplings) { ArgumentChecks.ensureNonNull("subsamplings", subsamplings); if (toBase != null) { throw new IllegalStateException(Errors.format(Errors.Keys.ValueAlreadyDefined_1, "subsamplings")); } // Validity of the subsamplings values will be verified by GridExtent.subsample(…) invoked below. final GridExtent extent = (baseExtent != null) ? baseExtent : base.getExtent(); Matrix affine = null; final int dimension = extent.getDimension(); for (int i = Math.min(dimension, subsamplings.length); --i >= 0;) { final int s = subsamplings[i]; if (s != 1) { if (affine == null) { affine = Matrices.createIdentity(dimension + 1); scaledExtent = extent.subsample(subsamplings); } final double sd = s; affine.setElement(i, i, sd); affine.setElement(i, dimension, extent.getLow(i) - scaledExtent.getLow(i) * sd); } } if (affine != null) { toBase = MathTransforms.linear(affine); /* * Take the matrix scale factors as the resolutions, unless the scale factors were already computed * by subgrid(GridGeometry). In the later case the scales may have fractional values, which we keep. */ if (scales == null) { scales = new double[dimension]; for (int i=0; i<dimension; i++) { scales[i] = affine.getElement(i,i); } } } return this; }
Example 9
Source File: AffineTest.java From sis with Apache License 2.0 | 5 votes |
/** * Tests WKT formatting, and in particular the adjustment according * whether we comply with EPSG:9624 definition or not. */ @Test @DependsOnMethod("testParameters") public void testWKT() { final Matrix matrix = Matrices.createDiagonal(3, 3); assertWktEquals( "PARAMETERGROUP[“Affine parametric transformation”," + " ID[“EPSG”, 9624]]", Affine.parameters(matrix)); /* * Try arbitrary values. */ matrix.setElement(0, 1, 2); // A1 matrix.setElement(1, 1, 0); // B1 matrix.setElement(1, 2, -1); // B2 assertWktEquals( "PARAMETERGROUP[“Affine parametric transformation”,\n" + " PARAMETER[“A1”, 2.0, ID[“EPSG”, 8624]],\n" + " PARAMETER[“B1”, 0.0, ID[“EPSG”, 8640]],\n" + " PARAMETER[“B2”, -1.0, ID[“EPSG”, 8641]],\n" + " ID[“EPSG”, 9624]]", Affine.parameters(matrix)); /* * Setting a value on the last row make the matrix non-affine. * So it should not be anymore EPSG:9624. */ matrix.setElement(2, 0, 3); // C0 assertWktEquals( "PARAMETERGROUP[“Affine”,\n" + " PARAMETER[“num_row”, 3],\n" + " PARAMETER[“num_col”, 3],\n" + " PARAMETER[“elt_0_1”, 2.0],\n" + " PARAMETER[“elt_1_1”, 0.0],\n" + " PARAMETER[“elt_1_2”, -1.0],\n" + " PARAMETER[“elt_2_0”, 3.0]]", Affine.parameters(matrix)); }
Example 10
Source File: DefaultConversionTest.java From sis with Apache License 2.0 | 5 votes |
/** * Creates a very simple conversion performing a longitude rotation. * The source CRS shall use the Paris prime meridian and the target CRS the Greenwich prime meridian, * at least conceptually. See {@link #createLongitudeRotation(boolean)} for an explanation about why * this is not really a valid conversion. * * @param sourceCRS a CRS using the Paris prime meridian. * @param targetCRS a CRS using the Greenwich prime meridian. * @param interpolationCRS a dummy interpolation CRS, or {@code null} if none. */ private static DefaultConversion createLongitudeRotation(final GeographicCRS sourceCRS, final GeographicCRS targetCRS, final TemporalCRS interpolationCRS) { /* * The following code fills the parameter values AND creates itself the MathTransform instance * (indirectly, through the matrix). The later step is normally not our business, since we are * supposed to only fill the parameter values and let MathTransformFactory creates the transform * from the parameters. But we don't do the normal steps here because this class is a unit test: * we want to test DefaultConversion in isolation of MathTransformFactory. */ final int interpDim = ReferencingUtilities.getDimension(interpolationCRS); final int sourceDim = sourceCRS.getCoordinateSystem().getDimension(); final int targetDim = targetCRS.getCoordinateSystem().getDimension(); final OperationMethod method = DefaultOperationMethodTest.create( "Longitude rotation", "9601", "EPSG guidance note #7-2", sourceDim, DefaultParameterDescriptorTest.createEPSG("Longitude offset", (short) 8602)); final ParameterValueGroup pg = method.getParameters().createValue(); pg.parameter("Longitude offset").setValue(OFFSET); final Matrix rotation = Matrices.createDiagonal( targetDim + interpDim + 1, // Number of rows. sourceDim + interpDim + 1); // Number of columns. rotation.setElement(interpDim, interpDim + sourceDim, OFFSET); /* * In theory we should not need to provide the parameters explicitly to the constructor since * we are supposed to be able to find them from the MathTransform. But in this simple test we * did not bothered to define a specialized MathTransform class for our case. So we will help * a little bit DefaultConversion by telling it the parameters that we used. */ final Map<String, Object> properties = new HashMap<>(4); properties.put(DefaultTransformation.NAME_KEY, "Paris to Greenwich"); properties.put(CoordinateOperations.PARAMETERS_KEY, pg); return new DefaultConversion(properties, sourceCRS, targetCRS, interpolationCRS, method, MathTransforms.linear(rotation)); }
Example 11
Source File: DatumShiftGrid.java From sis with Apache License 2.0 | 5 votes |
/** * Estimates the derivative at the given grid indices. Derivatives must be consistent with values given by * {@link #interpolateInCell(double, double, double[])} at adjacent positions. For a two-dimensional grid, * {@code tₐ(x,y)} an abbreviation for {@code interpolateInCell(gridX, gridY, …)[a]} and for <var>x</var> * and <var>y</var> integers, the derivative is: * * {@preformat math * ┌ ┐ ┌ ┐ * │ ∂t₀/∂x ∂t₀/∂y │ = │ t₀(x+1,y) - t₀(x,y) + 1 t₀(x,y+1) - t₀(x,y) │ * │ ∂t₁/∂x ∂t₁/∂y │ │ t₁(x+1,y) - t₁(x,y) t₁(x,y+1) - t₁(x,y) + 1 │ * └ ┘ └ ┘ * } * * <h4>Extrapolations</h4> * Derivatives must be consistent with {@link #interpolateInCell(double, double, double[])} even when the * given coordinates are outside the grid. The {@code interpolateInCell(…)} contract in such cases is to * compute the translation vector at the closest position in the grid. A consequence of this contract is * that translation vectors stay constant when moving along at least one direction outside the grid. * Consequences on the derivative matrix are as below: * * <ul> * <li>If both {@code gridX} and {@code gridY} are outside the grid, then the derivative is the identity matrix.</li> * <li>If only {@code gridX} is outside the grid, then only the first column is set to [1, 0, …]. * The second column is set to the derivative of the closest cell at {@code gridY} position.</li> * <li>If only {@code gridY} is outside the grid, then only the second column is set to [0, 1, …]. * The first column is set to the derivative of the closest cell at {@code gridX} position.</li> * </ul> * * @param gridX first grid coordinate of the point for which to get the translation. * @param gridY second grid coordinate of the point for which to get the translation. * @return the derivative at the given location. * * @see #isCellInGrid(double, double) * @see #interpolateInCell(double, double, double[]) */ public Matrix derivativeInCell(double gridX, double gridY) { final int xmax = gridSize[0] - 2; final int ymax = gridSize[1] - 2; int ix = (int) gridX; int iy = (int) gridY; if (ix < 0 || ix > xmax || iy < 0 || iy > ymax) { final double[] gridCoordinates = {gridX, gridY}; replaceOutsideGridCoordinates(gridCoordinates); gridX = gridCoordinates[0]; gridY = gridCoordinates[1]; ix = Math.max(0, Math.min(xmax, (int) gridX)); iy = Math.max(0, Math.min(ymax, (int) gridY)); } gridX -= ix; gridY -= iy; final boolean skipX = (gridX < 0 || gridX > 1); final boolean skipY = (gridY < 0 || gridY > 1); final Matrix derivative = Matrices.createDiagonal(getTranslationDimensions(), gridSize.length); for (int j=derivative.getNumRow(); --j>=0;) { final double r00 = getCellValue(j, ix, iy ); final double r01 = getCellValue(j, ix+1, iy ); // Naming convention: ryx (row index first, like matrix). final double r10 = getCellValue(j, ix, iy+1); final double r11 = getCellValue(j, ix+1, iy+1); if (!skipX) { double dx = r01 - r00; dx += (r11 - r10 - dx) * gridX; derivative.setElement(j, 0, derivative.getElement(j, 0) + dx); } if (!skipY) { double dy = r10 - r00; dy += (r11 - r01 - dy) * gridY; derivative.setElement(j, 1, derivative.getElement(j, 1) + dy); } } return derivative; }
Example 12
Source File: LocalizationGridBuilder.java From sis with Apache License 2.0 | 5 votes |
/** * Infers a grid size by searching for the greatest common divisor (GCD) for values in the given vector. * The vector values should be integers, but this method is tolerant to constant offsets (typically 0.5). * The GCD is taken as a "grid to source" scale factor and the minimal value as the translation term. * Those two values are stored in the {@code dim} row of the given matrix. * * @param source the vector of values for which to get the GCD and minimum value. * @param fromGrid matrix where to store the minimum value and the GCD. * @param dim index of the matrix row to update. * @return grid size. */ private static int infer(final Vector source, final Matrix fromGrid, final int dim) { final NumberRange<?> range = source.range(); final double min = range.getMinDouble(true); final double span = range.getMaxDouble(true) - min; final Number increment = source.increment(EPS * span); double inc; if (increment != null) { inc = increment.doubleValue(); } else { inc = span; final int size = source.size(); for (int i=0; i<size; i++) { double v = source.doubleValue(i) - min; if (Math.abs(v % inc) > EPS) { do { final double r = (inc % v); // Both 'inc' and 'v' are positive, so 'r' will be positive too. inc = v; v = r; } while (Math.abs(v) > EPS); } } } /* * Compute the size from the increment that we found. If the size is larger than the vector length, * consider as too large. The rational is that attempt to create a localization grid with that size * would fail anyway, because it would contain holes where no value is defined. A limit is important * for preventing useless allocation of large arrays - https://issues.apache.org/jira/browse/SIS-407 */ fromGrid.setElement(dim, dim, inc); fromGrid.setElement(dim, SOURCE_DIMENSION, min); final double n = span / inc; if (n >= 0.5 && n < source.size() - 0.5) { // Compare as 'double' in case the value is large. return ((int) Math.round(n)) + 1; } throw new ArithmeticException(Resources.format(Resources.Keys.CanNotInferGridSizeFromValues_1, range)); }
Example 13
Source File: TensorParameters.java From sis with Apache License 2.0 | 5 votes |
/** * Constructs a matrix from a group of parameters. * This operation is allowed only for tensors of {@linkplain #rank() rank} 2. * * @param parameters the group of parameters. * @return a matrix constructed from the specified group of parameters. * @throws InvalidParameterNameException if a parameter name was not recognized. * * @see #createValueGroup(Map, Matrix) */ public Matrix toMatrix(final ParameterValueGroup parameters) throws InvalidParameterNameException { if (rank() != 2) { throw new IllegalStateException(); } ArgumentChecks.ensureNonNull("parameters", parameters); if (parameters instanceof TensorValues) { return ((TensorValues) parameters).toMatrix(); // More efficient implementation } // Fallback on the general case (others implementations) final ParameterValue<?> numRow = parameters.parameter(dimensions[0].getName().getCode()); final ParameterValue<?> numCol = parameters.parameter(dimensions[1].getName().getCode()); final Matrix matrix = Matrices.createDiagonal(numRow.intValue(), numCol.intValue()); final List<GeneralParameterValue> values = parameters.values(); if (values != null) { for (final GeneralParameterValue param : values) { if (param == numRow || param == numCol) { continue; } final String name = param.getDescriptor().getName().getCode(); IllegalArgumentException cause = null; int[] indices = null; try { indices = nameToIndices(name); } catch (IllegalArgumentException e) { cause = e; } if (indices == null) { throw (InvalidParameterNameException) new InvalidParameterNameException(Errors.format( Errors.Keys.UnexpectedParameter_1, name), name).initCause(cause); } matrix.setElement(indices[0], indices[1], ((ParameterValue<?>) param).doubleValue()); } } return matrix; }
Example 14
Source File: Variable.java From sis with Apache License 2.0 | 5 votes |
/** * Sets the scale and offset coefficients in the given "grid to CRS" transform if possible. * Source and target dimensions given to this method are in "natural" order (reverse of netCDF order). * This method is invoked only for variables that represent a coordinate system axis. * Setting the coefficient is possible only if values in this variable are regular, * i.e. the difference between two consecutive values is constant. * * @param gridToCRS the matrix in which to set scale and offset coefficient. * @param srcDim the source dimension, which is a dimension of the grid. Identifies the matrix column of scale factor. * @param tgtDim the target dimension, which is a dimension of the CRS. Identifies the matrix row of scale factor. * @param values the vector to use for computing scale and offset. * @return whether this method has successfully set the scale and offset coefficients. * @throws IOException if an error occurred while reading the data. * @throws DataStoreException if a logical error occurred. */ protected boolean trySetTransform(final Matrix gridToCRS, final int srcDim, final int tgtDim, final Vector values) throws IOException, DataStoreException { final int n = values.size() - 1; if (n >= 0) { final double first = values.doubleValue(0); Number increment; if (n >= 1) { final double last = values.doubleValue(n); double error; if (getDataType() == DataType.FLOAT) { error = Math.max(Math.ulp((float) first), Math.ulp((float) last)); } else { error = Math.max(Math.ulp(first), Math.ulp(last)); } error = Math.max(Math.ulp(last - first), error) / n; increment = values.increment(error); // May return null. } else { increment = Double.NaN; } if (increment != null) { gridToCRS.setElement(tgtDim, srcDim, increment.doubleValue()); gridToCRS.setElement(tgtDim, gridToCRS.getNumCol() - 1, first); return true; } } return false; }
Example 15
Source File: RasterUtils.java From geowave with Apache License 2.0 | 4 votes |
/** * Creates a math transform using the information provided. * * @return The math transform. * @throws IllegalStateException if the grid range or the envelope were not set. */ public static MathTransform createTransform( final double[] idRangePerDimension, final MultiDimensionalNumericData fullBounds) throws IllegalStateException { final GridToEnvelopeMapper mapper = new GridToEnvelopeMapper(); final boolean swapXY = mapper.getSwapXY(); final boolean[] reverse = mapper.getReverseAxis(); final PixelInCell gridType = PixelInCell.CELL_CORNER; final int dimension = 2; /* * Setup the multi-dimensional affine transform for use with OpenGIS. According OpenGIS * specification, transforms must map pixel center. This is done by adding 0.5 to grid * coordinates. */ final double translate; if (PixelInCell.CELL_CENTER.equals(gridType)) { translate = 0.5; } else if (PixelInCell.CELL_CORNER.equals(gridType)) { translate = 0.0; } else { throw new IllegalStateException( Errors.format(ErrorKeys.ILLEGAL_ARGUMENT_$2, "gridType", gridType)); } final Matrix matrix = MatrixFactory.create(dimension + 1); final double[] minValuesPerDimension = fullBounds.getMinValuesPerDimension(); final double[] maxValuesPerDimension = fullBounds.getMaxValuesPerDimension(); for (int i = 0; i < dimension; i++) { // NOTE: i is a dimension in the 'gridRange' space (source // coordinates). // j is a dimension in the 'userRange' space (target coordinates). int j = i; if (swapXY) { j = 1 - j; } double scale = idRangePerDimension[j]; double offset; if ((reverse == null) || (j >= reverse.length) || !reverse[j]) { offset = minValuesPerDimension[j]; } else { scale = -scale; offset = maxValuesPerDimension[j]; } offset -= scale * (-translate); matrix.setElement(j, j, 0.0); matrix.setElement(j, i, scale); matrix.setElement(j, dimension, offset); } return ProjectiveTransform.create(matrix); }
Example 16
Source File: DefaultMathTransformFactory.java From sis with Apache License 2.0 | 4 votes |
/** * Given a transform between normalized spaces, * creates a transform taking in account axis directions, units of measurement and longitude rotation. * This method {@linkplain #createConcatenatedTransform concatenates} the given parameterized transform * with any other transform required for performing units changes and coordinates swapping. * * <p>The given {@code parameterized} transform shall expect * {@linkplain org.apache.sis.referencing.cs.AxesConvention#NORMALIZED normalized} input coordinates and * produce normalized output coordinates. See {@link org.apache.sis.referencing.cs.AxesConvention} for more * information about what Apache SIS means by "normalized".</p> * * <div class="note"><b>Example:</b> * The most typical examples of transforms with normalized inputs/outputs are normalized * map projections expecting (<cite>longitude</cite>, <cite>latitude</cite>) inputs in degrees * and calculating (<cite>x</cite>, <cite>y</cite>) coordinates in metres, * both of them with ({@linkplain org.opengis.referencing.cs.AxisDirection#EAST East}, * {@linkplain org.opengis.referencing.cs.AxisDirection#NORTH North}) axis orientations.</div> * * <h4>Controlling the normalization process</h4> * Users who need a different normalized space than the default one way find more convenient to * override the {@link Context#getMatrix Context.getMatrix(ContextualParameters.MatrixRole)} method. * * @param parameterized a transform for normalized input and output coordinates. * @param context source and target coordinate systems in which the transform is going to be used. * @return a transform taking in account unit conversions and axis swapping. * @throws FactoryException if the object creation failed. * * @see org.apache.sis.referencing.cs.AxesConvention#NORMALIZED * @see org.apache.sis.referencing.operation.DefaultConversion#DefaultConversion(Map, OperationMethod, MathTransform, ParameterValueGroup) * * @since 0.7 */ public MathTransform swapAndScaleAxes(final MathTransform parameterized, final Context context) throws FactoryException { ArgumentChecks.ensureNonNull("parameterized", parameterized); ArgumentChecks.ensureNonNull("context", context); /* * Computes matrix for swapping axis and performing units conversion. * There is one matrix to apply before projection on (longitude,latitude) * coordinates, and one matrix to apply after projection on (easting,northing) * coordinates. */ final Matrix swap1 = context.getMatrix(ContextualParameters.MatrixRole.NORMALIZATION); final Matrix swap3 = context.getMatrix(ContextualParameters.MatrixRole.DENORMALIZATION); /* * Prepares the concatenation of the matrices computed above and the projection. * Note that at this stage, the dimensions between each step may not be compatible. * For example the projection (step2) is usually two-dimensional while the source * coordinate system (step1) may be three-dimensional if it has a height. */ MathTransform step1 = (swap1 != null) ? createAffineTransform(swap1) : MathTransforms.identity(parameterized.getSourceDimensions()); MathTransform step3 = (swap3 != null) ? createAffineTransform(swap3) : MathTransforms.identity(parameterized.getTargetDimensions()); MathTransform step2 = parameterized; /* * Special case for the way EPSG handles reversal of axis direction. For now the "Vertical Offset" (EPSG:9616) * method is the only one for which we found a need for special case. But if more special cases are added in a * future SIS version, then we should replace the static method by a non-static one defined in AbstractProvider. */ if (context.provider instanceof VerticalOffset) { step2 = VerticalOffset.postCreate(step2, swap3); } /* * If the target coordinate system has a height, instructs the projection to pass * the height unchanged from the base CRS to the target CRS. After this block, the * dimensions of 'step2' and 'step3' should match. */ final int numTrailingCoordinates = step3.getSourceDimensions() - step2.getTargetDimensions(); if (numTrailingCoordinates > 0) { step2 = createPassThroughTransform(0, step2, numTrailingCoordinates); } /* * If the source CS has a height but the target CS doesn't, drops the extra coordinates. * After this block, the dimensions of 'step1' and 'step2' should match. */ final int sourceDim = step1.getTargetDimensions(); final int targetDim = step2.getSourceDimensions(); if (sourceDim > targetDim) { final Matrix drop = Matrices.createDiagonal(targetDim+1, sourceDim+1); drop.setElement(targetDim, sourceDim, 1); // Element in the lower-right corner. step1 = createConcatenatedTransform(createAffineTransform(drop), step1); } MathTransform mt = createConcatenatedTransform(createConcatenatedTransform(step1, step2), step3); /* * At this point we finished to create the transform. But before to return it, verify if the * parameterized transform given in argument had some custom parameters. This happen with the * Equirectangular projection, which can be simplified as an AffineTransform while we want to * continue to describe it with the "semi_major", "semi_minor", etc. parameters instead than * "elt_0_0", "elt_0_1", etc. The following code just forwards those parameters to the newly * created transform; it does not change the operation. */ if (parameterized instanceof ParameterizedAffine && !(mt instanceof ParameterizedAffine)) { mt = ((ParameterizedAffine) parameterized).newTransform(mt); } return mt; }
Example 17
Source File: TransformSeparator.java From sis with Apache License 2.0 | 4 votes |
/** * Creates a transform for the same mathematic than the given {@code step} * but producing only the given dimensions as outputs. * This method is invoked by {@link #separate()} when user-specified target dimensions need to be taken in account. * The given {@code step} and {@code dimensions} are typically the values of * {@link #transform} and {@link #targetDimensions} fields respectively, but not necessarily. * * <p>Subclasses can override this method if they need to handle some {@code MathTransform} implementations * in a special way. However all implementations of this method shall obey to the following contract:</p> * <ul> * <li>{@link #sourceDimensions} and {@link #targetDimensions} should not be assumed accurate.</li> * <li>{@link #sourceDimensions} should not be modified by this method.</li> * <li>{@link #targetDimensions} should not be modified by this method.</li> * </ul> * * The number and nature of inputs stay unchanged. For example if the supplied {@code transform} * has (<var>longitude</var>, <var>latitude</var>, <var>height</var>) outputs, then a filtered * transform may keep only the (<var>longitude</var>, <var>latitude</var>) part for the same inputs. * In most cases, the filtered transform is non-invertible since it looses information. * * @param step the transform for which to retain only a subset of the target dimensions. * @param dimensions indices of the target dimensions of {@code step} to retain. * @return a transform producing only the given target dimensions. * @throws FactoryException if the given transform is not separable. */ protected MathTransform filterTargetDimensions(MathTransform step, final int[] dimensions) throws FactoryException { final int numSrc = step.getSourceDimensions(); int numTgt = step.getTargetDimensions(); final int lower = dimensions[0]; final int upper = dimensions[dimensions.length - 1]; if (lower == 0 && upper == numTgt && dimensions.length == numTgt) { return step; } /* * If the transform is an instance of passthrough transform but no dimension from its sub-transform * is requested, then ignore the sub-transform (i.e. treat the whole transform as identity, except * for the number of target dimension which may be different from the number of input dimension). */ int removeAt = 0; int numRemoved = 0; if (step instanceof PassThroughTransform) { final PassThroughTransform passThrough = (PassThroughTransform) step; final int subLower = passThrough.firstAffectedCoordinate; final int numSubTgt = passThrough.subTransform.getTargetDimensions(); if (!containsAny(dimensions, subLower, subLower + numSubTgt)) { step = IdentityTransform.create(numTgt = numSrc); removeAt = subLower; numRemoved = numSubTgt - passThrough.subTransform.getSourceDimensions(); } } /* ┌ ┐ ┌ ┐ ┌ ┐ * Create the matrix to be used as a filter │x'│ │1 0 0 0│ │x│ * and concatenate it to the transform. The │z'│ = │0 0 1 0│ │y│ * matrix will contain 1 only in the target │1 │ │0 0 0 1│ │z│ * dimensions to keep, as in this example: └ ┘ └ ┘ │1│ * └ ┘ */ final Matrix matrix = Matrices.createZero(dimensions.length + 1, numTgt + 1); for (int j=0; j<dimensions.length; j++) { int i = dimensions[j]; if (i >= removeAt) { i -= numRemoved; } matrix.setElement(j, i, 1); } matrix.setElement(dimensions.length, numTgt, 1); return factory.concatenate(step, factory.linear(matrix)); }
Example 18
Source File: InterpolatedGeocentricTransform.java From sis with Apache License 2.0 | 3 votes |
/** * Computes the derivative by concatenating the "geographic to geocentric" and "geocentric to geographic" matrix, * with the {@linkplain #scale} factor between them. * * <div class="note"><b>Note:</b> * we could improve a little bit the precision by computing the derivative in the interpolation grid: * * {@preformat java * grid.derivativeInCell(grid.normalizedToGridX(λ), grid.normalizedToGridY(φ)); * } * * But this is a little bit complicated (need to convert to normalized units and divide by the grid * cell size) for a very small difference. For now we neglect that part.</div> * * @param m1 the derivative computed by the "geographic to geocentric" conversion. * @param m2 the derivative computed by the "geocentric to geographic" conversion. * @return the derivative for the "interpolated geocentric" transformation. */ final Matrix concatenate(final Matrix m1, final Matrix m2) { for (int i = m1.getNumCol(); --i >= 0;) { // Number of columns can be 2 or 3. for (int j = 3; --j >= 0;) { // Number of rows can not be anything else than 3. m1.setElement(j, i, m1.getElement(j, i) * scale); } } return Matrices.multiply(m2, m1); }