Java Code Examples for org.apache.commons.math3.stat.descriptive.rank.Median#evaluate()
The following examples show how to use
org.apache.commons.math3.stat.descriptive.rank.Median#evaluate() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: HDF5PCACoveragePoNCreationUtils.java From gatk-protected with BSD 3-Clause "New" or "Revised" License | 6 votes |
/** * Calculates the median of column medians and subtract it from all counts. * @param readCounts the input counts to center. * @return the median of medians that has been subtracted from all counts. */ @VisibleForTesting static double subtractMedianOfMedians(final ReadCountCollection readCounts, final Logger logger) { final RealMatrix counts = readCounts.counts(); final Median medianCalculator = new Median(); final double[] columnMedians = MatrixSummaryUtils.getColumnMedians(counts); final double medianOfMedians = medianCalculator.evaluate(columnMedians); counts.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() { @Override public double visit(final int row, final int column, final double value) { return value - medianOfMedians; } }); logger.info(String.format("Counts centered around the median of medians %.2f", medianOfMedians)); return medianOfMedians; }
Example 2
Source File: HDF5PCACoveragePoNCreationUtilsUnitTest.java From gatk-protected with BSD 3-Clause "New" or "Revised" License | 6 votes |
@Test(dataProvider = "readCountOnlyData") public void testSubtractMedianOfMedians(final ReadCountCollection readCounts) { final RealMatrix counts = readCounts.counts(); final Median median = new Median(); final double[] columnMedians = IntStream.range(0, counts.getColumnDimension()) .mapToDouble(i -> median.evaluate(counts.getColumn(i))).toArray(); final double center = median.evaluate(columnMedians); final double[][] expected = new double[counts.getRowDimension()][]; for (int i = 0; i < expected.length; i++) { expected[i] = counts.getRow(i).clone(); for (int j = 0; j < expected[i].length; j++) { expected[i][j] -= center; } } HDF5PCACoveragePoNCreationUtils.subtractMedianOfMedians(readCounts, NULL_LOGGER); final RealMatrix newCounts = readCounts.counts(); Assert.assertEquals(newCounts.getColumnDimension(), expected[0].length); Assert.assertEquals(newCounts.getRowDimension(), expected.length); for (int i = 0; i < expected.length; i++) { for (int j = 0; j < expected[i].length; j++) { Assert.assertEquals(newCounts.getEntry(i, j), expected[i][j], 0.000001); } } }
Example 3
Source File: Percentile.java From morpheus-core with Apache License 2.0 | 5 votes |
public static void main(String[] args) { final double[] values = new java.util.Random().doubles(5000).toArray(); final Percentile stat1 = new Percentile(0.5); final Median stat2 = new Median(); for (double value : values) stat1.add(value); final double result1 = stat1.getValue(); final double result2 = stat2.evaluate(values); if (result1 != result2) { throw new RuntimeException("Error: " + result1 + " != " + result2); } }
Example 4
Source File: MatrixTools.java From Juicebox with MIT License | 5 votes |
public static double getMedian(float[] values) { double[] array = new double[values.length]; for (int k = 0; k < values.length; k++) { array[k] = values[k]; } Median median = new Median(); return median.evaluate(array); }
Example 5
Source File: EDCoWThreshold.java From SONDY with GNU General Public License v3.0 | 5 votes |
public double mad(double [] autoCorrelationValues){ double [] tempTable = new double[autoCorrelationValues.length]; Median m = new Median(); double medianValue = m.evaluate(autoCorrelationValues); for(int i=0 ; i<autoCorrelationValues.length ;i++){ tempTable[i] = Math.abs(autoCorrelationValues[i] - medianValue); } return m.evaluate(tempTable); //return the median of tempTable, the equation (13) in the paper }
Example 6
Source File: AlleleLikelihoods.java From gatk with BSD 3-Clause "New" or "Revised" License | 5 votes |
/** * Updates the likelihood of the NonRef allele (if present) based on the likelihoods of a set of non-symbolic * <p> * This method does * </p> * * @param allelesToConsider */ @SuppressWarnings("unchecked") // for the cast (A) Allele.NON_REF_ALLELE below public void updateNonRefAlleleLikelihoods(final AlleleList<A> allelesToConsider) { final int nonRefAlleleIndex = indexOfAllele((A) Allele.NON_REF_ALLELE); if ( nonRefAlleleIndex < 0) { return; } final int alleleCount = alleles.numberOfAlleles(); final int nonSymbolicAlleleCount = alleleCount - 1; // likelihood buffer reused across evidence: final double[] qualifiedAlleleLikelihoods = new double[nonSymbolicAlleleCount]; final Median medianCalculator = new Median(); for (int s = 0; s < samples.numberOfSamples(); s++) { final double[][] sampleValues = valuesBySampleIndex[s]; final int evidenceCount = evidenceBySampleIndex.get(s).size(); for (int r = 0; r < evidenceCount; r++) { final BestAllele bestAllele = searchBestAllele(s, r, true); int numberOfQualifiedAlleleLikelihoods = 0; for (int i = 0; i < alleleCount; i++) { final double alleleLikelihood = sampleValues[i][r]; if (i != nonRefAlleleIndex && alleleLikelihood < bestAllele.likelihood && !Double.isNaN(alleleLikelihood) && allelesToConsider.indexOfAllele(alleles.getAllele(i)) != MISSING_INDEX) { qualifiedAlleleLikelihoods[numberOfQualifiedAlleleLikelihoods++] = alleleLikelihood; } } final double nonRefLikelihood = medianCalculator.evaluate(qualifiedAlleleLikelihoods, 0, numberOfQualifiedAlleleLikelihoods); // when the median is NaN that means that all applicable likekihoods are the same as the best // so the evidence is not informative at all given the existing alleles. Unless there is only one (or zero) concrete // alleles with give the same (the best) likelihood to the NON-REF. When there is only one (or zero) concrete // alleles we set the NON-REF likelihood to NaN. sampleValues[nonRefAlleleIndex][r] = !Double.isNaN(nonRefLikelihood) ? nonRefLikelihood : nonSymbolicAlleleCount <= 1 ? Double.NaN : bestAllele.likelihood; } } }
Example 7
Source File: DistributionalScoreAggregator.java From quaerite with Apache License 2.0 | 4 votes |
public double getMedian() { Median median = new Median(); return median.evaluate(doubleArray.getElements()); }
Example 8
Source File: IntendedSequenceBuilder.java From Drop-seq with MIT License | 4 votes |
public IntendedSequence build (final String intendedSequence, final BarcodeNeighborGroup neighbors) { IntendedSequence result = null; String root = neighbors.getRootSequence(); Integer deletedBasePos=null; Character deletedBase=null; Integer umiCountsIntended = null; Double umiBiasIntended = null; // need a non-null intendedSequence to check for deletions. if (intendedSequence!=null) { umiCountsIntended=umiCounts.getCountForKey(intendedSequence); umiBiasIntended = umiBias.get(intendedSequence); LevenshteinDistanceResult r= LevenshteinDistance.computeLevenshteinDistanceResult(intendedSequence, root, 1, 1, 2); String [] ops = r.getOperations(); // any position before the last is D, and last is I. // gather up the deleted base and position. for (int i=0; i<ops.length-2; i++) // if a deletion at some base, or a substitution at the last base with an intended sequence, then you can get deletion base/position/rate. if (ops[i].equals("D") && ops[ops.length-1].equals("I")) { deletedBasePos=i+1; // the position is one based. deletedBase = intendedSequence.charAt(deletedBasePos-1); // accessing the array 0 based. break; } // Special case: substitution at the last base only. if (ops[ops.length-1].equals("S")) { deletedBasePos=ops.length; // the position is one based. deletedBase = intendedSequence.charAt(deletedBasePos-1); // accessing the array 0 based. } } int totalRelatedUMIs =neighbors.getNeighborCellBarcodes().stream().mapToInt(x -> this.umiCounts.getCountForKey(x)).sum(); double [] neighborUMIs = neighbors.getNeighborCellBarcodes().stream().mapToDouble(x -> this.umiCounts.getCountForKey(x)).toArray(); double [] neighborUMIBias = neighbors.getNeighborCellBarcodes().stream().mapToDouble(x -> this.umiBias.get(x)).toArray(); Median m = new Median(); double medianNeighborUMIBias = m.evaluate(neighborUMIBias); double medianRelatedSequenceUMIs = m.evaluate(neighborUMIs); List<String> neighborBC = neighbors.getNeighborCellBarcodes(); result = new IntendedSequence(intendedSequence, neighborBC, deletedBase, deletedBasePos, umiCountsIntended, medianRelatedSequenceUMIs, totalRelatedUMIs, umiBiasIntended, medianNeighborUMIBias); return result; }
Example 9
Source File: EDCoWThreshold.java From SONDY with GNU General Public License v3.0 | 4 votes |
public double theta1(double [] autoCorrelationValues, double gama){ Median m = new Median(); return (m.evaluate(autoCorrelationValues) + (gama * mad(autoCorrelationValues))); }
Example 10
Source File: EDCoWThreshold.java From SONDY with GNU General Public License v3.0 | 4 votes |
public double theta2(double [][] crossCorrelationValues, double gama){ double[] vecCrossCorrelation = transformMatrix(crossCorrelationValues); Median m = new Median(); return (m.evaluate(vecCrossCorrelation) + (gama * mad(vecCrossCorrelation))); }
Example 11
Source File: AlleleLikelihoodsUnitTest.java From gatk with BSD 3-Clause "New" or "Revised" License | 4 votes |
@Test(dataProvider = "dataSets") public void testAddNonRefAllele(final String[] samples, final Allele[] alleles, final Map<String,List<GATKRead>> reads) { final AlleleLikelihoods<GATKRead, Allele> original = new AlleleLikelihoods<>(new IndexedSampleList(samples), new IndexedAlleleList<>(alleles), reads); final AlleleLikelihoods<GATKRead, Allele> result = new AlleleLikelihoods<>(new IndexedSampleList(samples), new IndexedAlleleList<>(alleles), reads); final double[][][] originalLikelihoods = fillWithRandomLikelihoods(samples,alleles,original, result); result.addNonReferenceAllele(Allele.NON_REF_ALLELE); Assert.assertEquals(result.numberOfAlleles(), original.numberOfAlleles() + 1); Assert.assertEquals(result.indexOfAllele(Allele.NON_REF_ALLELE), result.numberOfAlleles() - 1); final double[][][] newLikelihoods = new double[originalLikelihoods.length][][]; for (int s = 0; s < samples.length; s++) { newLikelihoods[s] = Arrays.copyOf(originalLikelihoods[s], originalLikelihoods[s].length + 1); final int sampleReadCount = original.sampleEvidenceCount(s); final int ordinarynumberOfAlleles = originalLikelihoods[s].length; newLikelihoods[s][ordinarynumberOfAlleles] = new double[sampleReadCount]; for (int r = 0; r < sampleReadCount; r++) { //TODO secondBestLk is totaly irrelevant, and this code is really just a MathUtils.max to get bestLk double bestLk = newLikelihoods[s][0][r]; double secondBestLk = Double.NEGATIVE_INFINITY; for (int a = 1; a < ordinarynumberOfAlleles; a++) { final double lk = originalLikelihoods[s][a][r]; if (lk > bestLk) { secondBestLk = bestLk; bestLk = lk; } else if (lk > secondBestLk) { secondBestLk = lk; } } final Median median = new Median(); final List<Double> qualifylingLikelihoods = new ArrayList<>(); for (int a = 0; a < ordinarynumberOfAlleles; a++) { if (originalLikelihoods[s][a][r] >= bestLk) continue; qualifylingLikelihoods.add(originalLikelihoods[s][a][r]); } final double medianLikelihood = median.evaluate(qualifylingLikelihoods.stream().mapToDouble(d -> d).toArray()); // NaN is returned in cases whether there is no elements in qualifyingLikelihoods. // In such case we set the NON-REF likelihood to -Inf. final double expectedNonRefLk = !Double.isNaN(medianLikelihood) ? medianLikelihood : ordinarynumberOfAlleles <= 1 ? Double.NaN : bestLk; newLikelihoods[s][ordinarynumberOfAlleles][r] = expectedNonRefLk; } } testLikelihoodMatrixQueries(samples,result,newLikelihoods); }