Java Code Examples for com.hazelcast.jet.pipeline.Pipeline#readFrom()
The following examples show how to use
com.hazelcast.jet.pipeline.Pipeline#readFrom() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MarkovChainGenerator.java From hazelcast-jet-demos with Apache License 2.0 | 5 votes |
/** * Builds and returns the Pipeline which represents the actual computation. * To compute the probability of finding word B after A, one has to know * how many pairs contain word A as a first entry and how many of them * contain B as a second entry. The pipeline creates pairs from consecutive * words and computes the probabilities of A->B. */ private static Pipeline buildPipeline() { Pipeline p = Pipeline.create(); // Reads files line-by-line BatchStage<String> lines = p.readFrom(Sources.<String>files(INPUT_FILE)); Pattern twoWords = Pattern.compile("(\\.|\\w+)\\s(\\.|\\w+)"); // Calculates probabilities by flatmapping lines into two-word consecutive pairs using regular expressions // and aggregates them into an IMap. lines.flatMap(e -> traverseMatcher(twoWords.matcher(e.toLowerCase()), m -> tuple2(m.group(1), m.group(2)))) .groupingKey(Tuple2::f0) .aggregate(buildAggregateOp()) .writeTo(Sinks.map("stateTransitions")); return p; }
Example 2
Source File: JetBetMain.java From hazelcast-jet-demos with Apache License 2.0 | 5 votes |
/** * Helper method to construct the pipeline for the job * * @return the pipeline for the real-time analysis */ public static Pipeline buildPipeline() { final Pipeline pipeline = Pipeline.create(); // Draw users from the Hazelcast IMDG source BatchStage<User> users = pipeline.readFrom(Sources.<User, Long, User>map(USER_ID, e -> true, Entry::getValue)); // All bet legs which are single BatchStage<Tuple3<Race, Horse, Bet>> bets = users.flatMap(user -> traverseStream( user.getKnownBets().stream() .filter(Bet::single) .flatMap(bet -> bet.getLegs().stream().map(leg -> tuple3(leg.getRace(), leg.getBacking(), bet))) ) ); // Find for each race the projected loss if each horse was to win BatchStage<Entry<Race, Map<Horse, Double>>> betsByRace = bets.groupingKey(Tuple3::f0).aggregate( AggregateOperations.toMap( Tuple3::f1, t -> t.f2().projectedPayout(t.f1()), // payout if backed horse was to win (l, r) -> l + r ) ); // Write out: (r : (h : losses)) betsByRace.writeTo(Sinks.map(WORST_ID)); return pipeline; }
Example 3
Source File: AnalysisJet.java From hazelcast-jet-demos with Apache License 2.0 | 5 votes |
/** * Helper method to construct the pipeline for the job * * @return the pipeline for the job */ public static Pipeline buildPipeline() { final Pipeline p = Pipeline.create(); // Compute map server side final BatchStage<Horse> c = p.readFrom(Sources.map(EVENTS_BY_NAME, t -> true, HORSE_FROM_EVENT)); final BatchStage<Entry<Horse, Long>> c2 = c.groupingKey(wholeItem()) .aggregate(counting()) .filter(ent -> ent.getValue() > 1); c2.writeTo(Sinks.map(MULTIPLE)); return p; }