Java Code Examples for org.apache.hadoop.mapred.TextInputFormat#getSplits()
The following examples show how to use
org.apache.hadoop.mapred.TextInputFormat#getSplits() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: FrameReaderTextCell.java From systemds with Apache License 2.0 | 6 votes |
protected void readTextCellFrameFromHDFS( Path path, JobConf job, FileSystem fs, FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen) throws IOException { if( fs.isDirectory(path) ) { FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); for(InputSplit split: splits) readTextCellFrameFromInputSplit(split, informat, job, dest); } else { readRawTextCellFrameFromHDFS(path, job, fs, dest, schema, names, rlen, clen); } }
Example 2
Source File: FrameReaderTextCell.java From systemds with Apache License 2.0 | 6 votes |
protected void readTextCellFrameFromHDFS( Path path, JobConf job, FileSystem fs, FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen) throws IOException { if( fs.isDirectory(path) ) { FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); for(InputSplit split: splits) readTextCellFrameFromInputSplit(split, informat, job, dest); } else { readRawTextCellFrameFromHDFS(path, job, fs, dest, schema, names, rlen, clen); } }
Example 3
Source File: TensorReaderTextCellParallel.java From systemds with Apache License 2.0 | 5 votes |
@Override protected TensorBlock readTextCellTensorFromHDFS(Path path, JobConf job, long[] dims, Types.ValueType[] schema) throws IOException { FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); int[] idims = Arrays.stream(dims).mapToInt(i -> (int) i).toArray(); TensorBlock ret; if( schema.length == 1 ) ret = new TensorBlock(schema[0], idims).allocateBlock(); else ret = new TensorBlock(schema, idims).allocateBlock(); try { ExecutorService pool = CommonThreadPool.get(_numThreads); InputSplit[] splits = informat.getSplits(job, _numThreads); //create and execute read tasks for all splits List<TensorReaderTextCellParallel.ReadTask> tasks = Arrays.stream(splits) .map(s -> new TensorReaderTextCellParallel.ReadTask(s, informat, job, ret)) .collect(Collectors.toList()); List<Future<Object>> rt = pool.invokeAll(tasks); //check for exceptions for (Future<Object> task : rt) task.get(); pool.shutdown(); } catch (Exception e) { throw new IOException("Threadpool issue, while parallel read.", e); } return ret; }
Example 4
Source File: ReaderTextLIBSVMParallel.java From systemds with Apache License 2.0 | 5 votes |
@Override public MatrixBlock readMatrixFromHDFS(String fname, long rlen, long clen, int blen, long estnnz) throws IOException, DMLRuntimeException { // prepare file access JobConf job = new JobConf(ConfigurationManager.getCachedJobConf()); Path path = new Path(fname); FileSystem fs = IOUtilFunctions.getFileSystem(path, job); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, _numThreads); splits = IOUtilFunctions.sortInputSplits(splits); // check existence and non-empty file checkValidInputFile(fs, path); // allocate output matrix block // First Read Pass (count rows/cols, determine offsets, allocate matrix block) MatrixBlock ret = computeLIBSVMSizeAndCreateOutputMatrixBlock(splits, path, job, rlen, clen, estnnz); rlen = ret.getNumRows(); clen = ret.getNumColumns(); // Second Read Pass (read, parse strings, append to matrix block) readLIBSVMMatrixFromHDFS(splits, path, job, ret, rlen, clen, blen); //post-processing (representation-specific, change of sparse/dense block representation) // - nnz explicitly maintained in parallel for the individual splits ret.examSparsity(); // sanity check for parallel row count (since determined internally) if (rlen >= 0 && rlen != ret.getNumRows()) throw new DMLRuntimeException("Read matrix inconsistent with given meta data: " + "expected nrow="+ rlen + ", real nrow=" + ret.getNumRows()); return ret; }
Example 5
Source File: FrameReaderTextCellParallel.java From systemds with Apache License 2.0 | 5 votes |
@Override protected void readTextCellFrameFromHDFS( Path path, JobConf job, FileSystem fs, FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen) throws IOException { int numThreads = OptimizerUtils.getParallelTextReadParallelism(); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); try { //create read tasks for all splits ExecutorService pool = CommonThreadPool.get(numThreads); InputSplit[] splits = informat.getSplits(job, numThreads); ArrayList<ReadTask> tasks = new ArrayList<>(); for( InputSplit split : splits ) tasks.add(new ReadTask(split, informat, job, dest)); //wait until all tasks have been executed List<Future<Object>> rt = pool.invokeAll(tasks); pool.shutdown(); //check for exceptions for( Future<Object> task : rt ) task.get(); } catch (Exception e) { throw new IOException("Failed parallel read of text cell input.", e); } }
Example 6
Source File: FrameReaderTextCellParallel.java From systemds with Apache License 2.0 | 5 votes |
@Override protected void readTextCellFrameFromHDFS( Path path, JobConf job, FileSystem fs, FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen) throws IOException { int numThreads = OptimizerUtils.getParallelTextReadParallelism(); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); try { //create read tasks for all splits ExecutorService pool = CommonThreadPool.get(numThreads); InputSplit[] splits = informat.getSplits(job, numThreads); ArrayList<ReadTask> tasks = new ArrayList<>(); for( InputSplit split : splits ) tasks.add(new ReadTask(split, informat, job, dest)); //wait until all tasks have been executed List<Future<Object>> rt = pool.invokeAll(tasks); pool.shutdown(); //check for exceptions for( Future<Object> task : rt ) task.get(); } catch (Exception e) { throw new IOException("Failed parallel read of text cell input.", e); } }
Example 7
Source File: ReaderTextLIBSVMParallel.java From systemds with Apache License 2.0 | 5 votes |
@Override public MatrixBlock readMatrixFromHDFS(String fname, long rlen, long clen, int blen, long estnnz) throws IOException, DMLRuntimeException { // prepare file access JobConf job = new JobConf(ConfigurationManager.getCachedJobConf()); Path path = new Path(fname); FileSystem fs = IOUtilFunctions.getFileSystem(path, job); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, _numThreads); splits = IOUtilFunctions.sortInputSplits(splits); // check existence and non-empty file checkValidInputFile(fs, path); // allocate output matrix block // First Read Pass (count rows/cols, determine offsets, allocate matrix block) MatrixBlock ret = computeLIBSVMSizeAndCreateOutputMatrixBlock(splits, path, job, rlen, clen, estnnz); rlen = ret.getNumRows(); clen = ret.getNumColumns(); // Second Read Pass (read, parse strings, append to matrix block) readLIBSVMMatrixFromHDFS(splits, path, job, ret, rlen, clen, blen); //post-processing (representation-specific, change of sparse/dense block representation) // - nnz explicitly maintained in parallel for the individual splits ret.examSparsity(); // sanity check for parallel row count (since determined internally) if (rlen >= 0 && rlen != ret.getNumRows()) throw new DMLRuntimeException("Read matrix inconsistent with given meta data: " + "expected nrow="+ rlen + ", real nrow=" + ret.getNumRows()); return ret; }
Example 8
Source File: TensorReaderTextCellParallel.java From systemds with Apache License 2.0 | 5 votes |
@Override protected TensorBlock readTextCellTensorFromHDFS(Path path, JobConf job, long[] dims, Types.ValueType[] schema) throws IOException { FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); int[] idims = Arrays.stream(dims).mapToInt(i -> (int) i).toArray(); TensorBlock ret; if( schema.length == 1 ) ret = new TensorBlock(schema[0], idims).allocateBlock(); else ret = new TensorBlock(schema, idims).allocateBlock(); try { ExecutorService pool = CommonThreadPool.get(_numThreads); InputSplit[] splits = informat.getSplits(job, _numThreads); //create and execute read tasks for all splits List<TensorReaderTextCellParallel.ReadTask> tasks = Arrays.stream(splits) .map(s -> new TensorReaderTextCellParallel.ReadTask(s, informat, job, ret)) .collect(Collectors.toList()); List<Future<Object>> rt = pool.invokeAll(tasks); //check for exceptions for (Future<Object> task : rt) task.get(); pool.shutdown(); } catch (Exception e) { throw new IOException("Threadpool issue, while parallel read.", e); } return ret; }
Example 9
Source File: FrameReaderTextCSV.java From systemds with Apache License 2.0 | 5 votes |
protected Pair<Integer,Integer> computeCSVSize( Path path, JobConf job, FileSystem fs) throws IOException { TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); splits = IOUtilFunctions.sortInputSplits(splits); //compute number of columns int ncol = IOUtilFunctions.countNumColumnsCSV(splits, informat, job, _props.getDelim()); //compute number of rows int nrow = 0; for( int i=0; i<splits.length; i++ ) { RecordReader<LongWritable, Text> reader = informat.getRecordReader(splits[i], job, Reporter.NULL); LongWritable key = new LongWritable(); Text value = new Text(); try { //ignore header of first split if( i==0 && _props.hasHeader() ) reader.next(key, value); //count remaining number of rows, ignore meta data while ( reader.next(key, value) ) { String val = value.toString(); nrow += ( val.startsWith(TfUtils.TXMTD_MVPREFIX) || val.startsWith(TfUtils.TXMTD_NDPREFIX)) ? 0 : 1; } } finally { IOUtilFunctions.closeSilently(reader); } } return new Pair<>(nrow, ncol); }
Example 10
Source File: FrameReaderTextCSV.java From systemds with Apache License 2.0 | 5 votes |
protected Pair<Integer,Integer> computeCSVSize( Path path, JobConf job, FileSystem fs) throws IOException { TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); splits = IOUtilFunctions.sortInputSplits(splits); //compute number of columns int ncol = IOUtilFunctions.countNumColumnsCSV(splits, informat, job, _props.getDelim()); //compute number of rows int nrow = 0; for( int i=0; i<splits.length; i++ ) { RecordReader<LongWritable, Text> reader = informat.getRecordReader(splits[i], job, Reporter.NULL); LongWritable key = new LongWritable(); Text value = new Text(); try { //ignore header of first split if( i==0 && _props.hasHeader() ) reader.next(key, value); //count remaining number of rows, ignore meta data while ( reader.next(key, value) ) { String val = value.toString(); nrow += ( val.startsWith(TfUtils.TXMTD_MVPREFIX) || val.startsWith(TfUtils.TXMTD_NDPREFIX)) ? 0 : 1; } } finally { IOUtilFunctions.closeSilently(reader); } } return new Pair<>(nrow, ncol); }
Example 11
Source File: FrameReaderTextCSVParallel.java From systemds with Apache License 2.0 | 5 votes |
@Override protected Pair<Integer,Integer> computeCSVSize( Path path, JobConf job, FileSystem fs) throws IOException { int numThreads = OptimizerUtils.getParallelTextReadParallelism(); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, numThreads); //compute number of columns int ncol = IOUtilFunctions.countNumColumnsCSV(splits, informat, job, _props.getDelim()); //compute number of rows int nrow = 0; ExecutorService pool = CommonThreadPool.get(numThreads); try { ArrayList<CountRowsTask> tasks = new ArrayList<>(); for( int i=0; i<splits.length; i++ ) tasks.add(new CountRowsTask(splits[i], informat, job, _props.hasHeader(), i==0)); List<Future<Long>> cret = pool.invokeAll(tasks); for( Future<Long> count : cret ) nrow += count.get().intValue(); } catch (Exception e) { throw new IOException("Failed parallel read of text csv input.", e); } finally { pool.shutdown(); } return new Pair<>(nrow, ncol); }
Example 12
Source File: FrameReaderTextCSV.java From systemds with Apache License 2.0 | 5 votes |
protected void readCSVFrameFromHDFS( Path path, JobConf job, FileSystem fs, FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen) throws IOException { TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); splits = IOUtilFunctions.sortInputSplits(splits); for( int i=0, rpos=0; i<splits.length; i++ ) rpos = readCSVFrameFromInputSplit(splits[i], informat, job, dest, schema, names, rlen, clen, rpos, i==0); }
Example 13
Source File: FrameReaderTextCSVParallel.java From systemds with Apache License 2.0 | 4 votes |
@Override protected void readCSVFrameFromHDFS( Path path, JobConf job, FileSystem fs, FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen) throws IOException { int numThreads = OptimizerUtils.getParallelTextReadParallelism(); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, numThreads); splits = IOUtilFunctions.sortInputSplits(splits); try { ExecutorService pool = CommonThreadPool.get( Math.min(numThreads, splits.length)); //compute num rows per split ArrayList<CountRowsTask> tasks = new ArrayList<>(); for( int i=0; i<splits.length; i++ ) tasks.add(new CountRowsTask(splits[i], informat, job, _props.hasHeader(), i==0)); List<Future<Long>> cret = pool.invokeAll(tasks); //compute row offset per split via cumsum on row counts long offset = 0; List<Long> offsets = new ArrayList<>(); for( Future<Long> count : cret ) { offsets.add(offset); offset += count.get(); } //read individual splits ArrayList<ReadRowsTask> tasks2 = new ArrayList<>(); for( int i=0; i<splits.length; i++ ) tasks2.add( new ReadRowsTask(splits[i], informat, job, dest, offsets.get(i).intValue(), i==0)); CommonThreadPool.invokeAndShutdown(pool, tasks2); } catch (Exception e) { throw new IOException("Failed parallel read of text csv input.", e); } }
Example 14
Source File: ReaderTextCell.java From systemds with Apache License 2.0 | 4 votes |
protected void readTextCellMatrixFromHDFS( Path path, JobConf job, MatrixBlock dest, long rlen, long clen, int blen ) throws IOException { boolean sparse = dest.isInSparseFormat(); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); LongWritable key = new LongWritable(); Text value = new Text(); IJV cell = new IJV(); long nnz = 0; try { FastStringTokenizer st = new FastStringTokenizer(' '); for(InputSplit split: splits) { RecordReader<LongWritable,Text> reader = informat.getRecordReader(split, job, Reporter.NULL); try { if( sparse ) { //SPARSE<-value while( reader.next(key, value) ) { cell = parseCell(value.toString(), st, cell, _mmProps); appendCell(cell, dest, _mmProps); } dest.sortSparseRows(); } else { //DENSE<-value DenseBlock a = dest.getDenseBlock(); while( reader.next(key, value) ) { cell = parseCell(value.toString(), st, cell, _mmProps); nnz += appendCell(cell, a, _mmProps); } } } finally { IOUtilFunctions.closeSilently(reader); } } if( !dest.isInSparseFormat() ) dest.setNonZeros(nnz); } catch(Exception ex) { //post-mortem error handling and bounds checking if( cell.getI() < 0 || cell.getI() + 1 > rlen || cell.getJ() < 0 || cell.getJ() + 1 > clen ) throw new IOException("Matrix cell ["+(cell.getI()+1)+","+(cell.getJ()+1)+"] " + "out of overall matrix range [1:"+rlen+",1:"+clen+"]."); else throw new IOException( "Unable to read matrix in text cell format.", ex ); } }
Example 15
Source File: ReaderTextCSVParallel.java From systemds with Apache License 2.0 | 4 votes |
@Override public MatrixBlock readMatrixFromHDFS(String fname, long rlen, long clen, int blen, long estnnz) throws IOException, DMLRuntimeException { // prepare file access JobConf job = new JobConf(ConfigurationManager.getCachedJobConf()); Path path = new Path(fname); FileSystem fs = IOUtilFunctions.getFileSystem(path, job); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, _numThreads); splits = IOUtilFunctions.sortInputSplits(splits); // check existence and non-empty file checkValidInputFile(fs, path); // allocate output matrix block // First Read Pass (count rows/cols, determine offsets, allocate matrix block) MatrixBlock ret = computeCSVSizeAndCreateOutputMatrixBlock(splits, path, job, _props.hasHeader(), _props.getDelim(), rlen, clen, estnnz); rlen = ret.getNumRows(); clen = ret.getNumColumns(); // Second Read Pass (read, parse strings, append to matrix block) readCSVMatrixFromHDFS(splits, path, job, ret, rlen, clen, blen, _props.hasHeader(), _props.getDelim(), _props.isFill(), _props.getFillValue()); //post-processing (representation-specific, change of sparse/dense block representation) // - no sorting required for CSV because it is read in sorted order per row // - nnz explicitly maintained in parallel for the individual splits ret.examSparsity(); // sanity check for parallel row count (since determined internally) if (rlen >= 0 && rlen != ret.getNumRows()) throw new DMLRuntimeException("Read matrix inconsistent with given meta data: " + "expected nrow="+ rlen + ", real nrow=" + ret.getNumRows()); return ret; }
Example 16
Source File: ReaderTextCell.java From systemds with Apache License 2.0 | 4 votes |
protected void readTextCellMatrixFromHDFS( Path path, JobConf job, MatrixBlock dest, long rlen, long clen, int blen ) throws IOException { boolean sparse = dest.isInSparseFormat(); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); LongWritable key = new LongWritable(); Text value = new Text(); IJV cell = new IJV(); long nnz = 0; try { FastStringTokenizer st = new FastStringTokenizer(' '); for(InputSplit split: splits) { RecordReader<LongWritable,Text> reader = informat.getRecordReader(split, job, Reporter.NULL); try { if( sparse ) { //SPARSE<-value while( reader.next(key, value) ) { cell = parseCell(value.toString(), st, cell, _mmProps); appendCell(cell, dest, _mmProps); } dest.sortSparseRows(); } else { //DENSE<-value DenseBlock a = dest.getDenseBlock(); while( reader.next(key, value) ) { cell = parseCell(value.toString(), st, cell, _mmProps); nnz += appendCell(cell, a, _mmProps); } } } finally { IOUtilFunctions.closeSilently(reader); } } if( !dest.isInSparseFormat() ) dest.setNonZeros(nnz); } catch(Exception ex) { //post-mortem error handling and bounds checking if( cell.getI() < 0 || cell.getI() + 1 > rlen || cell.getJ() < 0 || cell.getJ() + 1 > clen ) throw new IOException("Matrix cell ["+(cell.getI()+1)+","+(cell.getJ()+1)+"] " + "out of overall matrix range [1:"+rlen+",1:"+clen+"]."); else throw new IOException( "Unable to read matrix in text cell format.", ex ); } }
Example 17
Source File: ResultMergeLocalFile.java From systemds with Apache License 2.0 | 4 votes |
private static void mergeTextCellWithoutComp( String fnameNew, MatrixObject outMo, ArrayList<MatrixObject> inMO ) { try { //delete target file if already exists HDFSTool.deleteFileIfExistOnHDFS(fnameNew); if( ALLOW_COPY_CELLFILES ) { copyAllFiles(fnameNew, inMO); return; //we're done } //actual merge JobConf job = new JobConf(ConfigurationManager.getCachedJobConf()); Path path = new Path( fnameNew ); FileSystem fs = IOUtilFunctions.getFileSystem(path, job); BufferedWriter out = new BufferedWriter(new OutputStreamWriter(fs.create(path,true))); String valueStr = null; try { for( MatrixObject in : inMO ) //read/write all inputs { if( LOG.isTraceEnabled() ) LOG.trace("ResultMerge (local, file): Merge input "+in.hashCode()+" (fname=" +in.getFileName()+") via stream merge"); JobConf tmpJob = new JobConf(ConfigurationManager.getCachedJobConf()); Path tmpPath = new Path(in.getFileName()); FileInputFormat.addInputPath(tmpJob, tmpPath); TextInputFormat informat = new TextInputFormat(); informat.configure(tmpJob); InputSplit[] splits = informat.getSplits(tmpJob, 1); LongWritable key = new LongWritable(); Text value = new Text(); for(InputSplit split: splits) { RecordReader<LongWritable,Text> reader = informat.getRecordReader(split, tmpJob, Reporter.NULL); try { while(reader.next(key, value)) { valueStr = value.toString().trim(); out.write( valueStr+"\n" ); } } finally { IOUtilFunctions.closeSilently(reader); } } } } finally { IOUtilFunctions.closeSilently(out); } } catch(Exception ex) { throw new DMLRuntimeException("Unable to merge text cell results.", ex); } }
Example 18
Source File: DataPartitionerLocal.java From systemds with Apache License 2.0 | 4 votes |
private void partitionTextCell( String fname, String fnameStaging, String fnameNew, long rlen, long clen, int blen ) { long row = -1; long col = -1; try { //STEP 1: read matrix from HDFS and write blocks to local staging area //check and add input path JobConf job = new JobConf(ConfigurationManager.getCachedJobConf()); Path path = new Path(fname); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, 1); LinkedList<Cell> buffer = new LinkedList<>(); LongWritable key = new LongWritable(); Text value = new Text(); FastStringTokenizer st = new FastStringTokenizer(' '); for(InputSplit split: splits) { RecordReader<LongWritable,Text> reader = informat.getRecordReader(split, job, Reporter.NULL); try { while(reader.next(key, value)) { st.reset( value.toString() ); //reset tokenizer row = st.nextLong(); col = st.nextLong(); double lvalue = st.nextDouble(); Cell tmp = new Cell( row, col, lvalue ); buffer.addLast( tmp ); if( buffer.size() > StagingFileUtils.CELL_BUFFER_SIZE ) //periodic flush { appendCellBufferToStagingArea(fnameStaging, buffer, blen); buffer.clear(); } } //final flush if( !buffer.isEmpty() ) { appendCellBufferToStagingArea(fnameStaging, buffer, blen); buffer.clear(); } } finally { IOUtilFunctions.closeSilently(reader); } } //STEP 2: read matrix blocks from staging area and write matrix to HDFS String[] fnamesPartitions = new File(fnameStaging).list(); if(PARALLEL) { int len = Math.min(fnamesPartitions.length, _par); Thread[] threads = new Thread[len]; for( int i=0;i<len;i++ ) { int start = i*(int)Math.ceil(((double)fnamesPartitions.length)/len); int end = (i+1)*(int)Math.ceil(((double)fnamesPartitions.length)/len)-1; end = Math.min(end, fnamesPartitions.length-1); threads[i] = new Thread(new DataPartitionerWorkerTextCell(job, fnameNew, fnameStaging, fnamesPartitions, start, end)); threads[i].start(); } for( Thread t : threads ) t.join(); } else { for( String pdir : fnamesPartitions ) writeTextCellFileToHDFS( job, fnameNew, fnameStaging+"/"+pdir ); } } catch (Exception e) { //post-mortem error handling and bounds checking if( row < 1 || row > rlen || col < 1 || col > clen ) { throw new DMLRuntimeException("Matrix cell ["+(row)+","+(col)+"] " + "out of overall matrix range [1:"+rlen+",1:"+clen+"]."); } else throw new DMLRuntimeException("Unable to partition text cell matrix.", e); } }
Example 19
Source File: FrameReaderJSONLParallel.java From systemds with Apache License 2.0 | 4 votes |
@Override protected void readJSONLFrameFromHDFS(Path path, JobConf jobConf, FileSystem fileSystem, FrameBlock dest, Types.ValueType[] schema, Map<String, Integer> schemaMap) throws IOException { int numThreads = OptimizerUtils.getParallelTextReadParallelism(); TextInputFormat inputFormat = new TextInputFormat(); inputFormat.configure(jobConf); InputSplit[] splits = inputFormat.getSplits(jobConf, numThreads); splits = IOUtilFunctions.sortInputSplits(splits); try{ ExecutorService executorPool = CommonThreadPool.get(Math.min(numThreads, splits.length)); //compute num rows per split ArrayList<CountRowsTask> countRowsTasks = new ArrayList<>(); for (InputSplit split : splits){ countRowsTasks.add(new CountRowsTask(split, inputFormat, jobConf)); } List<Future<Long>> ret = executorPool.invokeAll(countRowsTasks); //compute row offset per split via cumsum on row counts long offset = 0; List<Long> offsets = new ArrayList<>(); for( Future<Long> rc : ret ) { offsets.add(offset); offset += rc.get(); } //read individual splits ArrayList<ReadRowsTask> readRowsTasks = new ArrayList<>(); for( int i=0; i<splits.length; i++ ) readRowsTasks.add(new ReadRowsTask(splits[i], inputFormat, jobConf, dest, schemaMap, offsets.get(i).intValue())); CommonThreadPool.invokeAndShutdown(executorPool, readRowsTasks); } catch (Exception e) { throw new IOException("Failed parallel read of JSONL input.", e); } }
Example 20
Source File: ReaderTextCSVParallel.java From systemds with Apache License 2.0 | 4 votes |
@Override public MatrixBlock readMatrixFromHDFS(String fname, long rlen, long clen, int blen, long estnnz) throws IOException, DMLRuntimeException { // prepare file access JobConf job = new JobConf(ConfigurationManager.getCachedJobConf()); Path path = new Path(fname); FileSystem fs = IOUtilFunctions.getFileSystem(path, job); FileInputFormat.addInputPath(job, path); TextInputFormat informat = new TextInputFormat(); informat.configure(job); InputSplit[] splits = informat.getSplits(job, _numThreads); splits = IOUtilFunctions.sortInputSplits(splits); // check existence and non-empty file checkValidInputFile(fs, path); // allocate output matrix block // First Read Pass (count rows/cols, determine offsets, allocate matrix block) MatrixBlock ret = computeCSVSizeAndCreateOutputMatrixBlock(splits, path, job, _props.hasHeader(), _props.getDelim(), rlen, clen, estnnz); rlen = ret.getNumRows(); clen = ret.getNumColumns(); // Second Read Pass (read, parse strings, append to matrix block) readCSVMatrixFromHDFS(splits, path, job, ret, rlen, clen, blen, _props.hasHeader(), _props.getDelim(), _props.isFill(), _props.getFillValue()); //post-processing (representation-specific, change of sparse/dense block representation) // - no sorting required for CSV because it is read in sorted order per row // - nnz explicitly maintained in parallel for the individual splits ret.examSparsity(); // sanity check for parallel row count (since determined internally) if (rlen >= 0 && rlen != ret.getNumRows()) throw new DMLRuntimeException("Read matrix inconsistent with given meta data: " + "expected nrow="+ rlen + ", real nrow=" + ret.getNumRows()); return ret; }