Java Code Examples for org.jpmml.converter.Feature#toContinuousFeature()
The following examples show how to use
org.jpmml.converter.Feature#toContinuousFeature() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TreeUtil.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 6 votes |
static private Schema toTreeModelSchema(DataType dataType, Schema schema){ Function<Feature, Feature> function = new Function<Feature, Feature>(){ @Override public Feature apply(Feature feature){ if(feature instanceof BinaryFeature){ BinaryFeature binaryFeature = (BinaryFeature)feature; return binaryFeature; } else { ContinuousFeature continuousFeature = feature.toContinuousFeature(dataType); return continuousFeature; } } }; return schema.toTransformedSchema(function); }
Example 2
Source File: EncoderUtil.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
static public Feature encodeIndexFeature(Feature feature, List<?> categories, List<? extends Number> indexCategories, Number mapMissingTo, Number defaultValue, DataType dataType, SkLearnEncoder encoder){ ClassDictUtil.checkSize(categories, indexCategories); encoder.toCategorical(feature.getName(), categories); Supplier<MapValues> mapValuesSupplier = () -> { MapValues mapValues = PMMLUtil.createMapValues(feature.getName(), categories, indexCategories) .setMapMissingTo(mapMissingTo) .setDefaultValue(defaultValue); return mapValues; }; DerivedField derivedField = encoder.ensureDerivedField(FeatureUtil.createName("encoder", feature), OpType.CATEGORICAL, dataType, mapValuesSupplier); Feature encodedFeature = new IndexFeature(encoder, derivedField, indexCategories); Feature result = new CategoricalFeature(encoder, feature, categories){ @Override public ContinuousFeature toContinuousFeature(){ return encodedFeature.toContinuousFeature(); } }; return result; }
Example 3
Source File: MVRConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 5 votes |
private void scaleFeatures(RExpEncoder encoder){ RGenericVector mvr = getObject(); RDoubleVector scale = mvr.getDoubleElement("scale", false); if(scale == null){ return; } List<Feature> features = encoder.getFeatures(); if(scale.size() != features.size()){ throw new IllegalArgumentException(); } for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Double factor = scale.getValue(i); if(ValueUtil.isOne(factor)){ continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); Apply apply = PMMLUtil.createApply(PMMLFunctions.DIVIDE, continuousFeature.ref(), PMMLUtil.createConstant(factor)); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("scale", feature), OpType.CONTINUOUS, DataType.DOUBLE, apply); features.set(i, new ContinuousFeature(encoder, derivedField)); } }
Example 4
Source File: RegressionTree.java From pyramid with Apache License 2.0 | 5 votes |
static private Predicate encodePredicate(Feature feature, Node node, boolean left){ FieldName name = feature.getName(); SimplePredicate.Operator operator; String value; if(feature instanceof BinaryFeature){ BinaryFeature binaryFeature = (BinaryFeature)feature; operator = (left ? SimplePredicate.Operator.NOT_EQUAL : SimplePredicate.Operator.EQUAL); value = binaryFeature.getValue(); } else { ContinuousFeature continuousFeature = feature.toContinuousFeature(); Number splitValue = node.getThreshold(); DataType dataType = continuousFeature.getDataType(); switch(dataType){ case INTEGER: splitValue = (int)(splitValue.floatValue() + 1f); break; case FLOAT: break; default: throw new IllegalArgumentException(); } operator = (left ? SimplePredicate.Operator.LESS_OR_EQUAL : SimplePredicate.Operator.GREATER_THAN); value = ValueUtil.formatValue(splitValue); } SimplePredicate simplePredicate = new SimplePredicate(name, operator) .setValue(value); return simplePredicate; }
Example 5
Source File: BoosterUtil.java From jpmml-sparkml-xgboost with GNU Affero General Public License v3.0 | 5 votes |
static public <C extends ModelConverter<?> & HasXGBoostOptions> MiningModel encodeBooster(C converter, Booster booster, Schema schema){ byte[] bytes = booster.toByteArray(); Learner learner; try(InputStream is = new ByteArrayInputStream(bytes)){ learner = XGBoostUtil.loadLearner(is); } catch(IOException ioe){ throw new RuntimeException(ioe); } Function<Feature, Feature> function = new Function<Feature, Feature>(){ @Override public Feature apply(Feature feature){ if(feature instanceof BinaryFeature){ BinaryFeature binaryFeature = (BinaryFeature)feature; return binaryFeature; } else { ContinuousFeature continuousFeature = feature.toContinuousFeature(DataType.FLOAT); return continuousFeature; } } }; Map<String, Object> options = new LinkedHashMap<>(); options.put(HasXGBoostOptions.OPTION_COMPACT, converter.getOption(HasXGBoostOptions.OPTION_COMPACT, false)); options.put(HasXGBoostOptions.OPTION_NTREE_LIMIT, converter.getOption(HasXGBoostOptions.OPTION_NTREE_LIMIT, null)); Schema xgbSchema = schema.toTransformedSchema(function); return learner.encodeMiningModel(options, xgbSchema); }
Example 6
Source File: Learner.java From jpmml-xgboost with GNU Affero General Public License v3.0 | 5 votes |
public Schema toXGBoostSchema(Schema schema){ Function<Feature, Feature> function = new Function<Feature, Feature>(){ @Override public Feature apply(Feature feature){ if(feature instanceof BinaryFeature){ BinaryFeature binaryFeature = (BinaryFeature)feature; return binaryFeature; } else { ContinuousFeature continuousFeature = feature.toContinuousFeature(); DataType dataType = continuousFeature.getDataType(); switch(dataType){ case INTEGER: case FLOAT: break; case DOUBLE: continuousFeature = continuousFeature.toContinuousFeature(DataType.FLOAT); break; default: throw new IllegalArgumentException("Expected integer, float or double data type, got " + dataType.value() + " data type"); } return continuousFeature; } } }; return schema.toTransformedSchema(function); }
Example 7
Source File: RobustScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Boolean withCentering = getWithCentering(); Boolean withScaling = getWithScaling(); List<? extends Number> center = (withCentering ? getCenter() : null); List<? extends Number> scale = (withScaling ? getScale() : null); if(center == null && scale == null){ return features; } ClassDictUtil.checkSize(features, center, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number centerValue = (withCentering ? center.get(i) : 0d); Number scaleValue = (withScaling ? scale.get(i) : 1d); if(ValueUtil.isZero(centerValue) && ValueUtil.isOne(scaleValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name - center) / scale" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(centerValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(centerValue)); } // End if if(!ValueUtil.isOne(scaleValue)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(scaleValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("robust_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 8
Source File: MinMaxScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ List<? extends Number> min = getMin(); List<? extends Number> scale = getScale(); ClassDictUtil.checkSize(features, min, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number minValue = min.get(i); Number scaleValue = scale.get(i); if(ValueUtil.isOne(scaleValue) && ValueUtil.isZero(minValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name * scale) + min" Expression expression = continuousFeature.ref(); if(!ValueUtil.isOne(scaleValue)){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(scaleValue)); } // End if if(!ValueUtil.isZero(minValue)){ expression = PMMLUtil.createApply(PMMLFunctions.ADD, expression, PMMLUtil.createConstant(minValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("mix_max_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 9
Source File: StandardScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Boolean withMean = getWithMean(); Boolean withStd = getWithStd(); List<? extends Number> mean = (withMean ? getMean() : null); List<? extends Number> std = (withStd ? getStd() : null); if(mean == null && std == null){ return features; } ClassDictUtil.checkSize(features, mean, std); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number meanValue = (withMean ? mean.get(i) : 0d); Number stdValue = (withStd ? std.get(i) : 1d); if(ValueUtil.isZero(meanValue) && ValueUtil.isOne(stdValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name - mean) / std" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(meanValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(meanValue)); } // End if if(!ValueUtil.isOne(stdValue)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(stdValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("standard_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 10
Source File: Binarizer.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Number threshold = getThreshold(); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name <= threshold) ? 0 : 1" Apply apply = PMMLUtil.createApply(PMMLFunctions.THRESHOLD, continuousFeature.ref(), PMMLUtil.createConstant(threshold)); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("binarizer", continuousFeature), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 11
Source File: BSplineTransformer.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ BSpline bspline = getBSpline(); ClassDictUtil.checkSize(1, features); Feature feature = features.get(0); ContinuousFeature continuousFeature = feature.toContinuousFeature(); DefineFunction defineFunction = createBSplineFunction(bspline, encoder); Apply apply = PMMLUtil.createApply(defineFunction.getName()) .addExpressions(continuousFeature.ref()); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("bspline", feature), apply); return Collections.singletonList(new ContinuousFeature(encoder, derivedField)); }
Example 12
Source File: StandardScalerModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ StandardScalerModel transformer = getTransformer(); Vector mean = transformer.mean(); Vector std = transformer.std(); boolean withMean = transformer.getWithMean(); boolean withStd = transformer.getWithStd(); List<Feature> features = encoder.getFeatures(transformer.getInputCol()); if(withMean){ SchemaUtil.checkSize(mean.size(), features); } // End if if(withStd){ SchemaUtil.checkSize(std.size(), features); } List<Feature> result = new ArrayList<>(); for(int i = 0, length = features.size(); i < length; i++){ Feature feature = features.get(i); FieldName name = formatName(transformer, i, length); Expression expression = null; if(withMean){ double meanValue = mean.apply(i); if(!ValueUtil.isZero(meanValue)){ ContinuousFeature continuousFeature = feature.toContinuousFeature(); expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, continuousFeature.ref(), PMMLUtil.createConstant(meanValue)); } } // End if if(withStd){ double stdValue = std.apply(i); if(!ValueUtil.isOne(stdValue)){ Double factor = (1d / stdValue); if(expression != null){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(factor)); } else { feature = new ProductFeature(encoder, feature, factor){ @Override public ContinuousFeature toContinuousFeature(){ Supplier<Apply> applySupplier = () -> { Feature feature = getFeature(); Number factor = getFactor(); return PMMLUtil.createApply(PMMLFunctions.MULTIPLY, (feature.toContinuousFeature()).ref(), PMMLUtil.createConstant(factor)); }; return toContinuousFeature(name, DataType.DOUBLE, applySupplier); } }; } } } // End if if(expression != null){ DerivedField derivedField = encoder.createDerivedField(name, OpType.CONTINUOUS, DataType.DOUBLE, expression); result.add(new ContinuousFeature(encoder, derivedField)); } else { result.add(feature); } } return result; }
Example 13
Source File: SVMConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
private void scaleFeatures(RExpEncoder encoder){ RGenericVector svm = getObject(); RDoubleVector sv = svm.getDoubleElement("SV"); RBooleanVector scaled = svm.getBooleanElement("scaled"); RGenericVector xScale = svm.getGenericElement("x.scale"); RStringVector rowNames = sv.dimnames(0); RStringVector columnNames = sv.dimnames(1); List<Feature> features = encoder.getFeatures(); if((scaled.size() != columnNames.size()) || (scaled.size() != features.size())){ throw new IllegalArgumentException(); } RDoubleVector xScaledCenter = xScale.getDoubleElement("scaled:center"); RDoubleVector xScaledScale = xScale.getDoubleElement("scaled:scale"); for(int i = 0; i < columnNames.size(); i++){ String columnName = columnNames.getValue(i); if(!scaled.getValue(i)){ continue; } Feature feature = features.get(i); Double center = xScaledCenter.getElement(columnName); Double scale = xScaledScale.getElement(columnName); if(ValueUtil.isZero(center) && ValueUtil.isOne(scale)){ continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(center)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(center)); } // End if if(!ValueUtil.isOne(scale)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(scale)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("scale", feature), OpType.CONTINUOUS, DataType.DOUBLE, expression); features.set(i, new ContinuousFeature(encoder, derivedField)); } }
Example 14
Source File: BucketizerConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ Bucketizer transformer = getTransformer(); InOutMode inputMode = getInputMode(); String[] inputCols; double[][] splitsArray; if((InOutMode.SINGLE).equals(inputMode)){ inputCols = inputMode.getInputCols(transformer); splitsArray = new double[][]{transformer.getSplits()}; } else if((InOutMode.MULTIPLE).equals(inputMode)){ inputCols = inputMode.getInputCols(transformer); splitsArray = transformer.getSplitsArray(); } else { throw new IllegalArgumentException(); } List<Feature> result = new ArrayList<>(); for(int i = 0; i < inputCols.length; i++){ String inputCol = inputCols[i]; double[] splits = splitsArray[i]; Feature feature = encoder.getOnlyFeature(inputCol); ContinuousFeature continuousFeature = feature.toContinuousFeature(); Discretize discretize = new Discretize(continuousFeature.getName()) .setDataType(DataType.INTEGER); List<Integer> categories = new ArrayList<>(); for(int j = 0; j < (splits.length - 1); j++){ Integer category = j; categories.add(category); Interval interval = new Interval((j < (splits.length - 2)) ? Interval.Closure.CLOSED_OPEN : Interval.Closure.CLOSED_CLOSED) .setLeftMargin(formatMargin(splits[j])) .setRightMargin(formatMargin(splits[j + 1])); DiscretizeBin discretizeBin = new DiscretizeBin(category, interval); discretize.addDiscretizeBins(discretizeBin); } DerivedField derivedField = encoder.createDerivedField(formatName(transformer, i), OpType.CATEGORICAL, DataType.INTEGER, discretize); result.add(new IndexFeature(encoder, derivedField, categories)); } return result; }
Example 15
Source File: PCAModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 3 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ PCAModel transformer = getTransformer(); DenseMatrix pc = transformer.pc(); List<Feature> features = encoder.getFeatures(transformer.getInputCol()); MatrixUtil.checkRows(features.size(), pc); List<Feature> result = new ArrayList<>(); for(int i = 0, length = transformer.getK(); i < length; i++){ Apply apply = new Apply(PMMLFunctions.SUM); for(int j = 0; j < features.size(); j++){ Feature feature = features.get(j); ContinuousFeature continuousFeature = feature.toContinuousFeature(); Expression expression = continuousFeature.ref(); Double coefficient = pc.apply(j, i); if(!ValueUtil.isOne(coefficient)){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(coefficient)); } apply.addExpressions(expression); } DerivedField derivedField = encoder.createDerivedField(formatName(transformer, i, length), OpType.CONTINUOUS, DataType.DOUBLE, apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 16
Source File: GaussianNB.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 3 votes |
@Override public NaiveBayesModel encodeModel(Schema schema){ int[] shape = getThetaShape(); int numberOfClasses = shape[0]; int numberOfFeatures = shape[1]; List<? extends Number> theta = getTheta(); List<? extends Number> sigma = getSigma(); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); BayesInputs bayesInputs = new BayesInputs(); for(int i = 0; i < numberOfFeatures; i++){ Feature feature = schema.getFeature(i); List<? extends Number> means = CMatrixUtil.getColumn(theta, numberOfClasses, numberOfFeatures, i); List<? extends Number> variances = CMatrixUtil.getColumn(sigma, numberOfClasses, numberOfFeatures, i); ContinuousFeature continuousFeature = feature.toContinuousFeature(); BayesInput bayesInput = new BayesInput(continuousFeature.getName(), encodeTargetValueStats(categoricalLabel.getValues(), means, variances), null); bayesInputs.addBayesInputs(bayesInput); } List<Integer> classCount = getClassCount(); BayesOutput bayesOutput = new BayesOutput(categoricalLabel.getName(), null) .setTargetValueCounts(encodeTargetValueCounts(categoricalLabel.getValues(), classCount)); NaiveBayesModel naiveBayesModel = new NaiveBayesModel(0d, MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), bayesInputs, bayesOutput) .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel)); return naiveBayesModel; }
Example 17
Source File: BinarizerConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 3 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ Binarizer transformer = getTransformer(); Double threshold = transformer.getThreshold(); InOutMode inputMode = getInputMode(); List<Feature> result = new ArrayList<>(); String[] inputCols = inputMode.getInputCols(transformer); for(int i = 0; i < inputCols.length; i++){ String inputCol = inputCols[i]; Feature feature = encoder.getOnlyFeature(inputCol); ContinuousFeature continuousFeature = feature.toContinuousFeature(); Apply apply = new Apply(PMMLFunctions.IF) .addExpressions(PMMLUtil.createApply(PMMLFunctions.LESSOREQUAL, continuousFeature.ref(), PMMLUtil.createConstant(threshold))) .addExpressions(PMMLUtil.createConstant(0d), PMMLUtil.createConstant(1d)); DerivedField derivedField = encoder.createDerivedField(formatName(transformer, i), OpType.CATEGORICAL, DataType.DOUBLE, apply); result.add(new IndexFeature(encoder, derivedField, Arrays.asList(0d, 1d))); } return result; }
Example 18
Source File: MaxAbsScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 3 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ List<? extends Number> scale = getScale(); ClassDictUtil.checkSize(features, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number value = scale.get(i); if(ValueUtil.isOne(value)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "$name / scale" Apply apply = PMMLUtil.createApply(PMMLFunctions.DIVIDE, continuousFeature.ref(), PMMLUtil.createConstant(value)); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("max_abs_scaler", continuousFeature), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 19
Source File: PCA.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 2 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ int[] shape = getComponentsShape(); int numberOfComponents = shape[0]; int numberOfFeatures = shape[1]; List<? extends Number> components = getComponents(); List<? extends Number> mean = getMean(); ClassDictUtil.checkSize(numberOfFeatures, features, mean); Boolean whiten = getWhiten(); List<? extends Number> explainedVariance = (whiten ? getExplainedVariance() : null); ClassDictUtil.checkSize(numberOfComponents, explainedVariance); String id = "pca@" + String.valueOf(PCA.SEQUENCE.getAndIncrement()); List<Feature> result = new ArrayList<>(); for(int i = 0; i < numberOfComponents; i++){ List<? extends Number> component = CMatrixUtil.getRow(components, numberOfComponents, numberOfFeatures, i); Apply apply = PMMLUtil.createApply(PMMLFunctions.SUM); for(int j = 0; j < numberOfFeatures; j++){ Feature feature = features.get(j); Number meanValue = mean.get(j); Number componentValue = component.get(j); if(ValueUtil.isZero(meanValue) && ValueUtil.isOne(componentValue)){ apply.addExpressions(feature.ref()); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name[i] - mean[i]) * component[i]" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(meanValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(meanValue)); } // End if if(!ValueUtil.isOne(componentValue)){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(componentValue)); } apply.addExpressions(expression); } if(whiten){ Number explainedVarianceValue = explainedVariance.get(i); if(!ValueUtil.isOne(explainedVarianceValue)){ apply = PMMLUtil.createApply(PMMLFunctions.DIVIDE, apply, PMMLUtil.createConstant(Math.sqrt(ValueUtil.asDouble(explainedVarianceValue)))); } } DerivedField derivedField = encoder.createDerivedField(FieldName.create(id + "[" + String.valueOf(i) + "]"), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 20
Source File: TruncatedSVD.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 2 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ int[] shape = getComponentsShape(); int numberOfComponents = shape[0]; int numberOfFeatures = shape[1]; List<? extends Number> components = getComponents(); ClassDictUtil.checkSize(numberOfFeatures, features); String id = "svd@" + String.valueOf(TruncatedSVD.SEQUENCE.getAndIncrement()); List<Feature> result = new ArrayList<>(); for(int i = 0; i < numberOfComponents; i++){ List<? extends Number> component = CMatrixUtil.getRow(components, numberOfComponents, numberOfFeatures, i); Apply apply = PMMLUtil.createApply(PMMLFunctions.SUM); for(int j = 0; j < numberOfFeatures; j++){ Feature feature = features.get(j); Number componentValue = component.get(j); if(ValueUtil.isOne(componentValue)){ apply.addExpressions(feature.ref()); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "$name[i] * component[i]" Expression expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, continuousFeature.ref(), PMMLUtil.createConstant(componentValue)); apply.addExpressions(expression); } DerivedField derivedField = encoder.createDerivedField(FieldName.create(id + "[" + String.valueOf(i) + "]"), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }