Java Code Examples for smile.data.AttributeDataset#size()
The following examples show how to use
smile.data.AttributeDataset#size() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 6 votes |
@Test public void testIrisSparseDenseEquals() throws IOException, ParseException, HiveException { String urlString = "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"; DecisionTree.Node denseNode = getDecisionTreeFromDenseInput(urlString); DecisionTree.Node sparseNode = getDecisionTreeFromSparseInput(urlString); URL url = new URL(urlString); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int diff = 0; for (int i = 0; i < size; i++) { if (denseNode.predict(x[i]) != sparseNode.predict(x[i])) { diff++; } } Assert.assertTrue("large diff " + diff + " between two predictions", diff < 10); }
Example 2
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 5 votes |
@Test public void testSerialization() throws HiveException, IOException, ParseException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); final Object[][] rows = new Object[size][2]; for (int i = 0; i < size; i++) { double[] row = x[i]; final List<String> xi = new ArrayList<String>(x[0].length); for (int j = 0; j < row.length; j++) { xi.add(j + ":" + row[j]); } rows[i][0] = xi; rows[i][1] = y[i]; } TestUtils.testGenericUDTFSerialization(RandomForestClassifierUDTF.class, new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 49")}, rows); }
Example 3
Source File: GradientTreeBoostingClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 5 votes |
@Test public void testSerialization() throws HiveException, IOException, ParseException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); final Object[][] rows = new Object[size][2]; for (int i = 0; i < size; i++) { double[] row = x[i]; final List<String> xi = new ArrayList<String>(x[0].length); for (int j = 0; j < row.length; j++) { xi.add(j + ":" + row[j]); } rows[i][0] = xi; rows[i][1] = y[i]; } TestUtils.testGenericUDTFSerialization(GradientTreeBoostingClassifierUDTF.class, new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 490")}, rows); }
Example 4
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
@Test public void testIrisDense() throws IOException, ParseException, HiveException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); RandomForestClassifierUDTF udtf = new RandomForestClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 49"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaDoubleObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final List<Double> xi = new ArrayList<Double>(x[0].length); for (int i = 0; i < size; i++) { for (int j = 0; j < x[i].length; j++) { xi.add(j, x[i][j]); } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final MutableInt count = new MutableInt(0); Collector collector = new Collector() { public void collect(Object input) throws HiveException { count.addValue(1); } }; udtf.setCollector(collector); udtf.close(); Assert.assertEquals(49, count.getValue()); }
Example 5
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
@Test public void testIrisDenseSomeNullFeaturesTest() throws IOException, ParseException, HiveException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); RandomForestClassifierUDTF udtf = new RandomForestClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 49"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaDoubleObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final Random rand = new Random(43); final List<Double> xi = new ArrayList<Double>(x[0].length); for (int i = 0; i < size; i++) { for (int j = 0; j < x[i].length; j++) { if (rand.nextDouble() >= 0.7) { xi.add(j, null); } else { xi.add(j, x[i][j]); } } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final MutableInt count = new MutableInt(0); Collector collector = new Collector() { public void collect(Object input) throws HiveException { count.addValue(1); } }; udtf.setCollector(collector); udtf.close(); Assert.assertEquals(49, count.getValue()); }
Example 6
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
@Test(expected = HiveException.class) public void testIrisDenseAllNullFeaturesTest() throws IOException, ParseException, HiveException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); RandomForestClassifierUDTF udtf = new RandomForestClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 49"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaDoubleObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final List<Double> xi = new ArrayList<Double>(x[0].length); for (int i = 0; i < size; i++) { for (int j = 0; j < x[i].length; j++) { xi.add(j, null); } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final MutableInt count = new MutableInt(0); Collector collector = new Collector() { public void collect(Object input) throws HiveException { count.addValue(1); } }; udtf.setCollector(collector); udtf.close(); Assert.fail("should not be called"); }
Example 7
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
@Test public void testIrisSparse() throws IOException, ParseException, HiveException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); RandomForestClassifierUDTF udtf = new RandomForestClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 49"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final List<String> xi = new ArrayList<String>(x[0].length); for (int i = 0; i < size; i++) { double[] row = x[i]; for (int j = 0; j < row.length; j++) { xi.add(j + ":" + row[j]); } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final MutableInt count = new MutableInt(0); Collector collector = new Collector() { public void collect(Object input) throws HiveException { count.addValue(1); } }; udtf.setCollector(collector); udtf.close(); Assert.assertEquals(49, count.getValue()); }
Example 8
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
private static DecisionTree.Node getDecisionTreeFromDenseInput(String urlString) throws IOException, ParseException, HiveException { URL url = new URL(urlString); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); RandomForestClassifierUDTF udtf = new RandomForestClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 1 -seed 71"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaDoubleObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final List<Double> xi = new ArrayList<Double>(x[0].length); for (int i = 0; i < size; i++) { for (int j = 0; j < x[i].length; j++) { xi.add(j, x[i][j]); } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final Text[] placeholder = new Text[1]; Collector collector = new Collector() { public void collect(Object input) throws HiveException { Object[] forward = (Object[]) input; placeholder[0] = (Text) forward[2]; } }; udtf.setCollector(collector); udtf.close(); Text modelTxt = placeholder[0]; Assert.assertNotNull(modelTxt); byte[] b = Base91.decode(modelTxt.getBytes(), 0, modelTxt.getLength()); DecisionTree.Node node = DecisionTree.deserialize(b, b.length, true); return node; }
Example 9
Source File: RandomForestClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
private static DecisionTree.Node getDecisionTreeFromSparseInput(String urlString) throws IOException, ParseException, HiveException { URL url = new URL(urlString); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); RandomForestClassifierUDTF udtf = new RandomForestClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 1 -seed 71"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final List<String> xi = new ArrayList<String>(x[0].length); for (int i = 0; i < size; i++) { final double[] row = x[i]; for (int j = 0; j < row.length; j++) { xi.add(j + ":" + row[j]); } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final Text[] placeholder = new Text[1]; Collector collector = new Collector() { public void collect(Object input) throws HiveException { Object[] forward = (Object[]) input; placeholder[0] = (Text) forward[2]; } }; udtf.setCollector(collector); udtf.close(); Text modelTxt = placeholder[0]; Assert.assertNotNull(modelTxt); byte[] b = Base91.decode(modelTxt.getBytes(), 0, modelTxt.getLength()); DecisionTree.Node node = DecisionTree.deserialize(b, b.length, true); return node; }
Example 10
Source File: GradientTreeBoostingClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
@Test public void testIrisDense() throws IOException, ParseException, HiveException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); GradientTreeBoostingClassifierUDTF udtf = new GradientTreeBoostingClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 490"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaDoubleObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final List<Double> xi = new ArrayList<Double>(x[0].length); for (int i = 0; i < size; i++) { for (int j = 0; j < x[i].length; j++) { xi.add(j, x[i][j]); } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final MutableInt count = new MutableInt(0); Collector collector = new Collector() { public void collect(Object input) throws HiveException { count.addValue(1); } }; udtf.setCollector(collector); udtf.close(); Assert.assertEquals(490, count.getValue()); }
Example 11
Source File: GradientTreeBoostingClassifierUDTFTest.java From incubator-hivemall with Apache License 2.0 | 4 votes |
@Test public void testIrisSparse() throws IOException, ParseException, HiveException { URL url = new URL( "https://gist.githubusercontent.com/myui/143fa9d05bd6e7db0114/raw/500f178316b802f1cade6e3bf8dc814a96e84b1e/iris.arff"); InputStream is = new BufferedInputStream(url.openStream()); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); AttributeDataset iris = arffParser.parse(is); int size = iris.size(); double[][] x = iris.toArray(new double[size][]); int[] y = iris.toArray(new int[size]); GradientTreeBoostingClassifierUDTF udtf = new GradientTreeBoostingClassifierUDTF(); ObjectInspector param = ObjectInspectorUtils.getConstantObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector, "-trees 490"); udtf.initialize(new ObjectInspector[] { ObjectInspectorFactory.getStandardListObjectInspector( PrimitiveObjectInspectorFactory.javaStringObjectInspector), PrimitiveObjectInspectorFactory.javaIntObjectInspector, param}); final List<String> xi = new ArrayList<String>(x[0].length); for (int i = 0; i < size; i++) { double[] row = x[i]; for (int j = 0; j < row.length; j++) { xi.add(j + ":" + row[j]); } udtf.process(new Object[] {xi, y[i]}); xi.clear(); } final MutableInt count = new MutableInt(0); Collector collector = new Collector() { public void collect(Object input) throws HiveException { count.addValue(1); } }; udtf.setCollector(collector); udtf.close(); Assert.assertEquals(490, count.getValue()); }