Java Code Examples for org.neuroph.nnet.learning.MomentumBackpropagation#addListener()

The following examples show how to use org.neuroph.nnet.learning.MomentumBackpropagation#addListener() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TestTimeSeries.java    From NeurophFramework with Apache License 2.0 6 votes vote down vote up
public void train() {
    // get the path to file with data
    String inputFileName = "C:\\timeseries\\BSW15";
    
    // create MultiLayerPerceptron neural network
    neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, 5, 10, 1);
    MomentumBackpropagation learningRule = (MomentumBackpropagation)neuralNet.getLearningRule();
    learningRule.setLearningRate(0.2);
    learningRule.setMomentum(0.5);
    // learningRule.addObserver(this);
    learningRule.addListener(this);        
    
    // create training set from file
     trainingSet = DataSet.createFromFile(inputFileName, 5, 1, "\t", false);
    // train the network with training set
    neuralNet.learn(trainingSet);         
          
    System.out.println("Done training.");          
}
 
Example 2
Source File: BreastCancerSample.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
public void run() {

        System.out.println("Creating training and test set from file...");
        String dataSetFile = "data_sets/breast_cancer.txt";
        int numInputs = 30;
        int numOutputs = 1;

        //Create data set from file
        DataSet dataSet = DataSet.createFromFile(dataSetFile, numInputs, numOutputs, ",");

        //Creatinig training set (70%) and test set (30%)
        DataSet[] trainTestSplit = dataSet.split(0.7, 0.3);
        DataSet trainingSet = trainTestSplit[0];
        DataSet testSet = trainTestSplit[1];

        //Normalizing data set
        Normalizer normalizer = new MaxNormalizer(trainingSet);
        normalizer.normalize(trainingSet);
        normalizer.normalize(testSet);

        //Create MultiLayerPerceptron neural network
        MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(numInputs, 16, numOutputs);

        //attach listener to learning rule
        MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
        learningRule.addListener(this);

        learningRule.setLearningRate(0.3);
        learningRule.setMaxError(0.01);
        learningRule.setMaxIterations(500);

        System.out.println("Training network...");
        //train the network with training set
        neuralNet.learn(trainingSet);

        System.out.println("Testing network...");
        testNeuralNetwork(neuralNet, testSet);

    }
 
Example 3
Source File: DiabetesSample.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
public void run() {
    String dataSetFile = "data_sets/diabetes.txt";
    int inputsCount = 8;
    int outputsCount = 1;

    // Create data set from file
    DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",");

    // Creatinig training set (70%) and test set (30%)
    DataSet[] trainTestSplit = dataSet.split(0.7, 0.3);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    // Normalizing training and test set
    Normalizer normalizer = new MaxNormalizer(trainingSet);
    normalizer.normalize(trainingSet);
    normalizer.normalize(testSet);

    System.out.println("Creating neural network...");
    //Create MultiLayerPerceptron neural network
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 20, 10, outputsCount);
    //attach listener to learning rule
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener(this);

    learningRule.setLearningRate(0.6);
    learningRule.setMaxError(0.07);
    learningRule.setMaxIterations(100000);

    System.out.println("Training network...");
    //train the network with training set
    neuralNet.learn(trainingSet);

    System.out.println("Testing network...");
    testNeuralNetwork(neuralNet, testSet);

}
 
Example 4
Source File: BatchImageTrainer.java    From FakeImageDetection with GNU General Public License v3.0 5 votes vote down vote up
@Override
public void doRun() {
    try {
        System.out.println("Starting training thread....." + sampleDimension.toString() + " and " + imageLabels.toString());

        HashMap<String, BufferedImage> imagesMap = new HashMap<String, BufferedImage>();
        for (File file : srcDirectory.listFiles()) {
            imageLabels.add(FilenameUtils.removeExtension(file.getName()));
            if (sampleDimension.getWidth() > 0 && sampleDimension.getHeight() > 0) {
                Double w = sampleDimension.getWidth();
                Double h = sampleDimension.getHeight();
                imagesMap.put(file.getName(), ImageUtilities.resizeImage(ImageUtilities.loadImage(file), w.intValue(), h.intValue()));
            }
        }
        Map<String, FractionRgbData> imageRgbData = ImageUtilities.getFractionRgbDataForImages(imagesMap);
        DataSet learningData = ImageRecognitionHelper.createRGBTrainingSet(imageLabels, imageRgbData);

        nnet = NeuralNetwork.load(new FileInputStream(nnFile)); //Load NNetwork
        MomentumBackpropagation mBackpropagation = (MomentumBackpropagation) nnet.getLearningRule();
        mBackpropagation.setLearningRate(learningRate);
        mBackpropagation.setMaxError(maxError);
        mBackpropagation.setMomentum(momentum);

        System.out.println("Network Information\nLabel = " + nnet.getLabel()
                + "\n Input Neurons = " + nnet.getInputsCount()
                + "\n Number of layers = " + nnet.getLayersCount()
        );

        mBackpropagation.addListener(this);
        System.out.println("Starting training......");
        nnet.learn(learningData, mBackpropagation);
        //Training Completed
        listener.batchImageTrainingCompleted();
    } catch (FileNotFoundException ex) {
        System.out.println(ex.getMessage() + "\n" + ex.getLocalizedMessage());
    }

}
 
Example 5
Source File: SingleImageTrainer.java    From FakeImageDetection with GNU General Public License v3.0 5 votes vote down vote up
@Override
public void doRun() {
    HashMap<String, BufferedImage> imagesMap = new HashMap<String, BufferedImage>();
    String fileName = "";
    if (!isReal) {
        fileName = "real";
    } else {
        fileName = "faked";
    }

    System.out.println("Teaching as " + fileName);
    imagesMap.put(fileName, image);
    Map<String, FractionRgbData> imageRgbData = ImageUtilities.getFractionRgbDataForImages(imagesMap);
    DataSet learningData = ImageRecognitionHelper.createRGBTrainingSet(labels, imageRgbData);
    MomentumBackpropagation mBackpropagation = (MomentumBackpropagation) nnet.getLearningRule();
    mBackpropagation.setLearningRate(learningRate);
    mBackpropagation.setMaxError(maxError);
    mBackpropagation.setMomentum(momentum);

    System.out.println("Network Information\nLabel = " + nnet.getLabel()
            + "\n Input Neurons = " + nnet.getInputsCount()
            + "\n Number of layers = " + nnet.getLayersCount()
    );

    mBackpropagation.addListener(this);
    System.out.println("Starting training......");
    nnet.learn(learningData, mBackpropagation);

    //Mark nnet as dirty. Write on close
    isDirty = true;
}
 
Example 6
Source File: SegmentChallengeSample.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {

        System.out.println("Creating training and test set from file...");
        String dataSetFile = "data_sets/segment challenge.txt";
        String testSetFileName = "data_sets/segment test.txt";
        int inputsCount = 19;
        int outputsCount = 7;

        //Create training data set from file
        DataSet trainingSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",");
        System.out.println("Training set size: " + trainingSet.getRows().size());
        trainingSet.shuffle();

        //Normalizing training data set
        Normalizer normalizer = new MaxNormalizer(trainingSet);
        normalizer.normalize(trainingSet);

        //Create test data set from file
        DataSet testSet = DataSet.createFromFile(testSetFileName, inputsCount, outputsCount, ",");
        System.out.println("Test set size: " + testSet.getRows().size());
        System.out.println("--------------------------------------------------");
        testSet.shuffle();

        //Normalizing training data set
        normalizer.normalize(testSet);

        System.out.println("Creating neural network...");
        //Create MultiLayerPerceptron neural network
        MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 17, 10, outputsCount);
        //attach listener to learning rule
        MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
        learningRule.addListener((event) -> {
            BackPropagation bp = (BackPropagation) event.getSource();
            if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) {
                double error = bp.getTotalNetworkError();
                System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, ");
                System.out.println("With total error: " + formatDecimalNumber(error));
            } else {
                System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError());
            }
        });

        learningRule.setLearningRate(0.01);
        learningRule.setMaxError(0.001);
        learningRule.setMaxIterations(12000);

        System.out.println("Training network...");
        //train the network with training set
        neuralNet.learn(trainingSet);

        System.out.println("Testing network...\n\n");
        testNeuralNetwork(neuralNet, testSet);

        System.out.println("Done.");
        System.out.println("**************************************************");
//        }
    }
 
Example 7
Source File: IrisFlowers.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating training set...");
    // get path to training set
    String trainingSetFileName = "data_sets/irisdatanormalised.txt";
    int inputsCount = 4;
    int outputsCount = 3;

    // create training set from file
    DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, ",");

    // splid data into training and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 2, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener(this);

    // set learning rate and max error
    learningRule.setLearningRate(0.2);
    learningRule.setMaxError(0.03);
    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

    System.out.println();
    System.out.println("Network outputs for test set");
    testNeuralNetwork(neuralNet, testSet);
}
 
Example 8
Source File: WineQualityClassification.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating training set...");
    // get path to training set
    String dataSetFile = "data_sets/wine.txt";
    int inputsCount = 11;
    int outputsCount = 10;

    // create training set from file
    DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", true);

    // split data into train and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    Normalizer norm = new MaxNormalizer(trainingSet);
    norm.normalize(trainingSet);
    norm.normalize(testSet);

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 20, 15, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener(this);

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxIterations(5000);

    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

    System.out.println();
    System.out.println("Network outputs for test set");
    testNeuralNetwork(neuralNet, testSet);
}
 
Example 9
Source File: IonosphereSample2.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {

        System.out.println("Creating training and test set from file...");
        String dataSetFile = "data_sets/ionosphere.csv";
        int inputsCount = 34;
        int outputsCount = 1;

        //Create data set from file
        DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",");
        dataSet.shuffle();

        //Normalizing data set
        Normalizer normalizer = new MaxNormalizer(dataSet);
        normalizer.normalize(dataSet);

        //Creatinig training set (70%) and test set (30%)
        DataSet[] trainingAndTestSet = dataSet.createTrainingAndTestSubsets(70, 30);
        DataSet trainingSet = trainingAndTestSet[0];
        DataSet testSet = trainingAndTestSet[1];

        // ovde ubaci u petlju sa hidden neuronima i learning rates

        System.out.println("Creating neural network...");
        //Create MultiLayerPerceptron neural network
        MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 10, 8, outputsCount);

        //attach listener to learning rule
        MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
        learningRule.addListener(this);

        learningRule.setLearningRate(0.4);
        learningRule.setMaxError(0.01);
        learningRule.setMaxIterations(10000);

        System.out.println("Training network...");
        //train the network with training set
        neuralNet.learn(trainingSet);

//        System.out.println("Testing network...\n\n");
//        testNeuralNetwork(neuralNet, testSet);

        System.out.println("Done.");
        System.out.println("**************************************************");
//        }
    }
 
Example 10
Source File: PimaIndiansDiabetes.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating data set...");
    String dataSetFile = "data_sets/ml10standard/pimadata.txt";
    int inputsCount = 8;
    int outputsCount = 1;

    // create data set from file
    DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", false);

    // split data into training and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    // normalize training and test set
    Normalizer norm = new MaxNormalizer(trainingSet);
    norm.normalize(trainingSet);
    norm.normalize(testSet);

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 15, 5, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener((event) -> {
        MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource();
        System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError());
    });

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxError(0.03);
    
    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");
}
 
Example 11
Source File: PimaIndiansDiabetes.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating training set...");
    // get path to training set
    String trainingSetFileName = "data_sets/pimadata.txt";
    int inputsCount = 8;
    int outputsCount = 1;

    // create training set from file
    DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, "\t", false);

    // split data into training and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    // normalize training and test set
    Normalizer norm = new MaxNormalizer(trainingSet);
    norm.normalize(trainingSet);
    norm.normalize(testSet);

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 15, 5, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener(this);

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxError(0.03);
    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

    System.out.println();
    System.out.println("Network outputs for test set");
    testNeuralNetwork(neuralNet, testSet);
}
 
Example 12
Source File: WheatSeeds.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating data set...");
    String dataSetFile = "data_sets/ml10standard/seeds.txt";
    int inputsCount = 7;
    int outputsCount = 3;

    // create training set from file
    DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t");

    // split data into train and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 15, 2, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener((event)->{
        MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource();
        System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError());
    });

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxError(0.01);
    learningRule.setMaxIterations(5000);
    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

    System.out.println();
    System.out.println("Network outputs for test set");
    testNeuralNetwork(neuralNet, testSet);
}
 
Example 13
Source File: WineQualityClassification.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating data set...");
    String dataSetFile = "data_sets/ml10standard/wine.txt";
    int inputsCount = 11;
    int outputsCount = 10;

    // create data set from file
    DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", true);

    // split data into train and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    Normalizer norm = new MaxNormalizer(trainingSet);
    norm.normalize(trainingSet);
    norm.normalize(testSet);

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 20, 15, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener((event)->{
        MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource();
        System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError());
    });

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxIterations(5000);

    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

    System.out.println();
    System.out.println("Network outputs for test set");
    testNeuralNetwork(neuralNet, testSet);
}
 
Example 14
Source File: WheatSeeds.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating training set...");
    // get path to training set
    String trainingSetFileName = "data_sets/seeds.txt";
    int inputsCount = 7;
    int outputsCount = 3;

    // create training set from file
    DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, "\t");

    // split data into train and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 15, 2, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener(this);

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxError(0.01);
    learningRule.setMaxIterations(5000);
    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

    System.out.println();
    System.out.println("Network outputs for test set");
    testNeuralNetwork(neuralNet, testSet);
}
 
Example 15
Source File: BostonHousePrice.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating data set...");
    String dataSetFile = "data_sets/ml10standard/bostonhouse.txt";
    int inputsCount = 13;
    int outputsCount = 1;

    // create data set from file
    DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",");

    // split data into training and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    // normalize data
    Normalizer norm = new MaxNormalizer(trainingSet);
    norm.normalize(trainingSet);
    norm.normalize(testSet);

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 2, 2, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener(event -> {
        MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource();
        System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError());
    });

    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

}
 
Example 16
Source File: Banknote.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating data set...");
    String dataSetFile = "data_sets/ml10standard/databanknote.txt";
    int inputsCount = 4;
    int outputsCount = 1;

    // create training set from file
    DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false);
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    Normalizer norm = new MaxNormalizer(trainingSet);
    norm.normalize(trainingSet);
    norm.normalize(testSet);

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 1, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener((event) -> {
        MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource();
        System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError());
    });

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxError(0.01);
    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");
}
 
Example 17
Source File: Ionosphere.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {
    System.out.println("Creating training set...");
    // get path to training set
    String trainingSetFileName = "data_sets/ionospheredata.txt";
    int inputsCount = 34;
    int outputsCount = 1;

    // create training set from file
    DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, ",", false);

    // split data into training and test set
    DataSet[] trainTestSplit = dataSet.split(0.6, 0.4);
    DataSet trainingSet = trainTestSplit[0];
    DataSet testSet = trainTestSplit[1];

    // normalize data
    Normalizer norm = new MaxNormalizer(trainingSet);
    norm.normalize(trainingSet);
    norm.normalize(testSet);

    System.out.println("Creating neural network...");
    MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 30, 25, outputsCount);

    neuralNet.setLearningRule(new MomentumBackpropagation());
    MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
    learningRule.addListener(this);

    // set learning rate and max error
    learningRule.setLearningRate(0.1);
    learningRule.setMaxError(0.01);
    System.out.println("Training network...");
    // train the network with training set
    neuralNet.learn(trainingSet);
    System.out.println("Training completed.");
    System.out.println("Testing network...");

    System.out.println("Network performance on the test set");
    evaluate(neuralNet, testSet);

    System.out.println("Saving network");
    // save neural network to file
    neuralNet.save("nn1.nnet");

    System.out.println("Done.");

    System.out.println();
    System.out.println("Network outputs for test set");
    testNeuralNetwork(neuralNet, testSet);
}
 
Example 18
Source File: BrestCancerSample.java    From NeurophFramework with Apache License 2.0 4 votes vote down vote up
public void run() {

        System.out.println("Creating training and test set from file...");
        String dataSetFile = "data_sets/breast cancer.txt";
        int inputsCount = 30;
        int outputsCount = 2; // use onlz one output - binarz classification, transform dat aset

        //Create data set from file
        DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",");

        //Creatinig training set (70%) and test set (30%)
        DataSet[] trainTestSplit = dataSet.split(0.7, 0.3);
        DataSet trainingSet = trainTestSplit[0];
        DataSet testSet = trainTestSplit[1];

        //Normalizing data set
        Normalizer normalizer = new MaxNormalizer(trainingSet);
        normalizer.normalize(trainingSet);
        normalizer.normalize(testSet);

        System.out.println("Creating neural network...");
        //Create MultiLayerPerceptron neural network
        MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 16, outputsCount);

        //attach listener to learning rule
        MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
        learningRule.addListener(this);

        learningRule.setLearningRate(0.3);
        learningRule.setMaxError(0.001);
        learningRule.setMaxIterations(5000);

        System.out.println("Training network...");
        //train the network with training set
        neuralNet.learn(trainingSet);

        System.out.println("Testing network...\n\n");
        testNeuralNetwork(neuralNet, testSet);

        System.out.println("Done.");

        System.out.println("**************************************************");

    }
 
Example 19
Source File: ShuttleLandingControlSample.java    From NeurophFramework with Apache License 2.0 3 votes vote down vote up
public void run() {

        System.out.println("Creating training set...");

        String dataSetFile = "data_sets/shuttle_landing_control_data.txt";
        int inputsCount = 15;
        int outputsCount = 2;

        // create training set from file
        DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false);


        System.out.println("Creating neural network...");
        // create MultiLayerPerceptron neural network
        MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 16, outputsCount);


        // attach listener to learning rule
        MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
        learningRule.addListener(this);

        // set learning rate and max error
        learningRule.setLearningRate(0.2);
        learningRule.setMaxError(0.01);

        System.out.println("Training network...");
        // train the network with training set
        neuralNet.learn(dataSet);

        System.out.println("Training completed.");
        System.out.println("Testing network...");

        testNeuralNetwork(neuralNet, dataSet);

        System.out.println("Saving network");
        // save neural network to file
        neuralNet.save("MyNeuralNetShuttle.nnet");

        System.out.println("Done.");
    }
 
Example 20
Source File: LensesClassificationSample.java    From NeurophFramework with Apache License 2.0 3 votes vote down vote up
public void run() {

        System.out.println("Creating training set...");
        
        String dataSetFile = "data_sets/lenses_data.txt";
        int inputsCount = 9;
        int outputsCount = 3;

        System.out.println("Creating training set...");
        DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, " ", false);


        System.out.println("Creating neural network...");
        // create MultiLayerPerceptron neural network
        MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 16, outputsCount);


        // attach listener to learning rule
        MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule();
        learningRule.addListener(this);

        // set learning rate and max error
        learningRule.setLearningRate(0.2);
        learningRule.setMaxError(0.01);

        System.out.println("Training network...");
        // train the network with training set
        neuralNet.learn(dataSet);

        System.out.println("Training completed.");
        System.out.println("Testing network...");

        testNeuralNetwork(neuralNet, dataSet);

        System.out.println("Saving network");
        // save neural network to file
        neuralNet.save("MyNeuralNetLenses.nnet");

        System.out.println("Done.");
    }