Java Code Examples for org.apache.crunch.Pipeline#read()
The following examples show how to use
org.apache.crunch.Pipeline#read() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testWriteModeOverwrite() throws IOException { Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); writeTestUsers(inputDataset, 1, 0); writeTestUsers(outputDataset, 1, 1); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputDataset)); pipeline.write(data, CrunchDatasets.asTarget((View<Record>) outputDataset), Target.WriteMode.OVERWRITE); pipeline.run(); checkTestUsers(outputDataset, 1); }
Example 2
Source File: TestCrunchDatasetsHBase.java From kite with Apache License 2.0 | 6 votes |
@Test public void testGeneric() throws IOException { String datasetName = tableName + ".TestGenericEntity"; DatasetDescriptor descriptor = new DatasetDescriptor.Builder() .schemaLiteral(testGenericEntity) .build(); Dataset<GenericRecord> inputDataset = repo.create("default", "in", descriptor); Dataset<GenericRecord> outputDataset = repo.create("default", datasetName, descriptor); writeRecords(inputDataset, 10); Pipeline pipeline = new MRPipeline(TestCrunchDatasetsHBase.class, HBaseTestUtils.getConf()); PCollection<GenericRecord> data = pipeline.read( CrunchDatasets.asSource(inputDataset)); pipeline.write(data, CrunchDatasets.asTarget(outputDataset), Target.WriteMode.APPEND); pipeline.run(); checkRecords(outputDataset, 10, 0); }
Example 3
Source File: TestCrunchDatasetsHBase.java From kite with Apache License 2.0 | 6 votes |
@Test public void testSourceView() throws IOException { String datasetName = tableName + ".TestGenericEntity"; DatasetDescriptor descriptor = new DatasetDescriptor.Builder() .schemaLiteral(testGenericEntity) .build(); Dataset<GenericRecord> inputDataset = repo.create("default", "in", descriptor); Dataset<GenericRecord> outputDataset = repo.create("default", datasetName, descriptor); writeRecords(inputDataset, 10); View<GenericRecord> inputView = inputDataset .from("part1", new Utf8("part1_2")).to("part1", new Utf8("part1_7")) .from("part2", new Utf8("part2_2")).to("part2", new Utf8("part2_7")); Assert.assertEquals(6, datasetSize(inputView)); Pipeline pipeline = new MRPipeline(TestCrunchDatasetsHBase.class, HBaseTestUtils.getConf()); PCollection<GenericRecord> data = pipeline.read( CrunchDatasets.asSource(inputView)); pipeline.write(data, CrunchDatasets.asTarget(outputDataset), Target.WriteMode.APPEND); pipeline.run(); checkRecords(outputDataset, 6, 2); }
Example 4
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testGeneric() throws IOException { Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); // write two files, each of 5 records writeTestUsers(inputDataset, 5, 0); writeTestUsers(inputDataset, 5, 5); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputDataset)); pipeline.write(data, CrunchDatasets.asTarget(outputDataset), Target.WriteMode.APPEND); pipeline.run(); checkTestUsers(outputDataset, 10); }
Example 5
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testMultipleFileReadingFromCrunch() throws IOException { Dataset<Record> inputDatasetA = repo.create("ns", "inA", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); Dataset<Record> inputDatasetB = repo.create("ns", "inB", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); // write two files, each of 5 records writeTestUsers(inputDatasetA, 5, 0); writeTestUsers(inputDatasetB, 5, 5); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> dataA = pipeline.read( CrunchDatasets.asSource(inputDatasetA)); PCollection<GenericData.Record> dataB = pipeline.read( CrunchDatasets.asSource(inputDatasetB)); pipeline.write(dataA.union(dataB), CrunchDatasets.asTarget(outputDataset), Target.WriteMode.APPEND); pipeline.run(); checkTestUsers(outputDataset, 10); }
Example 6
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testPartitionedSource() throws IOException { PartitionStrategy partitionStrategy = new PartitionStrategy.Builder().hash( "username", 2).build(); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).format(Formats.PARQUET).build()); writeTestUsers(inputDataset, 10); PartitionKey key = new PartitionKey(0); Dataset<Record> inputPart0 = ((PartitionedDataset<Record>) inputDataset).getPartition(key, false); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputPart0)); pipeline.write(data, CrunchDatasets.asTarget(outputDataset), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(5, datasetSize(outputDataset)); }
Example 7
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testPartitionedSourceAndTarget() throws IOException { PartitionStrategy partitionStrategy = new PartitionStrategy.Builder().hash( "username", 2).build(); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); writeTestUsers(inputDataset, 10); PartitionKey key = new PartitionKey(0); Dataset<Record> inputPart0 = ((PartitionedDataset<Record>) inputDataset).getPartition(key, false); Dataset<Record> outputPart0 = ((PartitionedDataset<Record>) outputDataset).getPartition(key, true); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputPart0)); pipeline.write(data, CrunchDatasets.asTarget(outputPart0), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(5, datasetSize(outputPart0)); }
Example 8
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testSourceView() throws IOException { PartitionStrategy partitionStrategy = new PartitionStrategy.Builder().hash( "username", 2).build(); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).format(Formats.PARQUET).build()); writeTestUsers(inputDataset, 10); View<Record> inputView = inputDataset.with("username", "test-0"); Assert.assertEquals(1, datasetSize(inputView)); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputView)); pipeline.write(data, CrunchDatasets.asTarget(outputDataset), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(1, datasetSize(outputDataset)); }
Example 9
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testDatasetUris() throws IOException { PartitionStrategy partitionStrategy = new PartitionStrategy.Builder().hash( "username", 2).build(); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); writeTestUsers(inputDataset, 10); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(new URIBuilder(repo.getUri(), "ns", "in").build(), GenericData.Record.class)); pipeline.write(data, CrunchDatasets.asTarget( new URIBuilder(repo.getUri(), "ns", "out").build()), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(10, datasetSize(outputDataset)); }
Example 10
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 6 votes |
@Test public void testTargetViewProvidedPartition() throws IOException { PartitionStrategy partitionStrategy = new PartitionStrategy.Builder().provided("version").build(); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); View<Record> inputView = inputDataset.with("version", "test-version-0"); writeTestUsers(inputView, 1); Assert.assertEquals(1, datasetSize(inputView)); View<Record> outputView = outputDataset.with("version", "test-version-0"); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputView)); pipeline.write(data, CrunchDatasets.asTarget(outputView), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(1, datasetSize(outputDataset)); }
Example 11
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 5 votes |
@Test public void testSignalReadyOutputView() { Assume.assumeTrue(!Hadoop.isHadoop1()); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); writeTestUsers(inputDataset, 10); View<Record> inputView = inputDataset.with("username", "test-8", "test-9"); View<Record> outputView = outputDataset.with("username", "test-8", "test-9"); Assert.assertEquals(2, datasetSize(inputView)); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputView)); pipeline.write(data, CrunchDatasets.asTarget(outputView), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(2, datasetSize(outputView)); Assert.assertFalse("Output dataset should not be signaled ready", ((Signalable)outputDataset).isReady()); Assert.assertTrue("Output view should be signaled ready", ((Signalable)outputView).isReady()); }
Example 12
Source File: MemPipelineUnitTest.java From tutorials with MIT License | 5 votes |
@Test public void givenPipeLineAndSource_whenSourceRead_thenExpectedNumberOfRecordsRead() { Pipeline pipeline = MemPipeline.getInstance(); Source<String> source = From.textFile(INPUT_FILE_PATH); PCollection<String> lines = pipeline.read(source); assertEquals(21, lines.asCollection() .getValue() .size()); }
Example 13
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 5 votes |
@Test(expected = CrunchRuntimeException.class) public void testWriteModeDefaultFailsWithExisting() throws IOException { Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).build()); writeTestUsers(inputDataset, 1, 0); writeTestUsers(outputDataset, 1, 0); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputDataset)); pipeline.write(data, CrunchDatasets.asTarget((View<Record>) outputDataset)); }
Example 14
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 5 votes |
@Test public void testViewUris() throws IOException { PartitionStrategy partitionStrategy = new PartitionStrategy.Builder().hash( "username", 2).build(); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); writeTestUsers(inputDataset, 10); URI sourceViewUri = new URIBuilder(repo.getUri(), "ns", "in").with("username", "test-0").build(); View<Record> inputView = Datasets.<Record, Dataset<Record>> load(sourceViewUri, Record.class); Assert.assertEquals(1, datasetSize(inputView)); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read(CrunchDatasets .asSource(sourceViewUri, GenericData.Record.class)); URI targetViewUri = new URIBuilder(repo.getUri(), "ns", "out").with( "email", "email-0").build(); pipeline.write(data, CrunchDatasets.asTarget(targetViewUri), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(1, datasetSize(outputDataset)); }
Example 15
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 5 votes |
private void runCheckpointPipeline(View<Record> inputView, View<Record> outputView) { Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputView)); pipeline.write(data, CrunchDatasets.asTarget(outputView), Target.WriteMode.CHECKPOINT); pipeline.done(); }
Example 16
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 5 votes |
@Test public void testPartitionedSourceAndTargetWritingToTopLevel() throws IOException { PartitionStrategy partitionStrategy = new PartitionStrategy.Builder().hash( "username", 2).build(); Dataset<Record> inputDataset = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); Dataset<Record> outputDataset = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(USER_SCHEMA).partitionStrategy(partitionStrategy).build()); writeTestUsers(inputDataset, 10); PartitionKey key = new PartitionKey(0); Dataset<Record> inputPart0 = ((PartitionedDataset<Record>) inputDataset).getPartition(key, false); Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputPart0)); pipeline.write(data, CrunchDatasets.asTarget(outputDataset), Target.WriteMode.APPEND); pipeline.run(); Assert.assertEquals(5, datasetSize(outputDataset)); // check all records are in the correct partition Dataset<Record> outputPart0 = ((PartitionedDataset<Record>) outputDataset).getPartition(key, false); Assert.assertNotNull(outputPart0); Assert.assertEquals(5, datasetSize(outputPart0)); }
Example 17
Source File: LegacyHdfs2Cass.java From hdfs2cass with Apache License 2.0 | 5 votes |
@Override public int run(String[] args) throws Exception { new JCommander(this, args); URI outputUri = URI.create(output); // Our crunch job is a MapReduce job Pipeline pipeline = new MRPipeline(LegacyHdfs2Cass.class, getConf()); // Parse & fetch info about target Cassandra cluster CassandraParams params = CassandraParams.parse(outputUri); // Read records from Avro files in inputFolder PCollection<ByteBuffer> records = pipeline.read(From.avroFile(inputList(input), Avros.records(ByteBuffer.class))); // Transform the input String protocol = outputUri.getScheme(); if (protocol.equalsIgnoreCase("thrift")) { records // First convert ByteBuffers to ThriftRecords .parallelDo(new LegacyHdfsToThrift(), ThriftRecord.PTYPE) // Then group the ThriftRecords in preparation for writing them .parallelDo(new ThriftRecord.AsPair(), ThriftRecord.AsPair.PTYPE) .groupByKey(params.createGroupingOptions()) // Finally write the ThriftRecords to Cassandra .write(new ThriftTarget(outputUri, params)); } else if (protocol.equalsIgnoreCase("cql")) { records // In case of CQL, convert ByteBuffers to CQLRecords .parallelDo(new LegacyHdfsToCQL(), CQLRecord.PTYPE) .by(params.getKeyFn(), Avros.bytes()) .groupByKey(params.createGroupingOptions()) .write(new CQLTarget(outputUri, params)); } // Execute the pipeline PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example 18
Source File: Hdfs2Cass.java From hdfs2cass with Apache License 2.0 | 4 votes |
@Override public int run(String[] args) throws Exception { new JCommander(this, args); URI outputUri = URI.create(output); // Our crunch job is a MapReduce job Configuration conf = getConf(); conf.setBoolean(MRJobConfig.MAP_SPECULATIVE, Boolean.FALSE); conf.setBoolean(MRJobConfig.REDUCE_SPECULATIVE, Boolean.FALSE); Pipeline pipeline = new MRPipeline(Hdfs2Cass.class, conf); // Parse & fetch info about target Cassandra cluster CassandraParams params = CassandraParams.parse(outputUri); PCollection<GenericRecord> records = ((PCollection<GenericRecord>)(PCollection) pipeline.read(From.avroFile(inputList(input)))); String protocol = outputUri.getScheme(); if (protocol.equalsIgnoreCase("thrift")) { records // First convert ByteBuffers to ThriftRecords .parallelDo(new AvroToThrift(rowkey, timestamp, ttl, ignore), ThriftRecord.PTYPE) // Then group the ThriftRecords in preparation for writing them .parallelDo(new ThriftRecord.AsPair(), ThriftRecord.AsPair.PTYPE) .groupByKey(params.createGroupingOptions()) // Finally write the ThriftRecords to Cassandra .write(new ThriftTarget(outputUri, params)); } else if (protocol.equalsIgnoreCase("cql")) { records // In case of CQL, convert ByteBuffers to CQLRecords .parallelDo(new AvroToCQL(rowkey, timestamp, ttl, ignore), CQLRecord.PTYPE) .by(params.getKeyFn(), Avros.bytes()) .groupByKey(params.createGroupingOptions()) .write(new CQLTarget(outputUri, params)); } // Execute the pipeline PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example 19
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 4 votes |
@Test public void testUseReaderSchema() throws IOException { // Create a schema with only a username, so we can test reading it // with an enhanced record structure. Schema oldRecordSchema = SchemaBuilder.record("org.kitesdk.data.user.OldUserRecord") .fields() .requiredString("username") .endRecord(); // create the dataset Dataset<Record> in = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(oldRecordSchema).build()); Dataset<Record> out = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(oldRecordSchema).build()); Record oldUser = new Record(oldRecordSchema); oldUser.put("username", "user"); DatasetWriter<Record> writer = in.newWriter(); try { writer.write(oldUser); } finally { writer.close(); } Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); // read data from updated dataset that has the new schema. // At this point, User class has the old schema PCollection<NewUserRecord> data = pipeline.read(CrunchDatasets.asSource(in.getUri(), NewUserRecord.class)); PCollection<NewUserRecord> processed = data.parallelDo(new UserRecordIdentityFn(), Avros.records(NewUserRecord.class)); pipeline.write(processed, CrunchDatasets.asTarget(out)); DatasetReader reader = out.newReader(); Assert.assertTrue("Pipeline failed.", pipeline.run().succeeded()); try { // there should be one record that is equal to our old user generic record. Assert.assertEquals(oldUser, reader.next()); Assert.assertFalse(reader.hasNext()); } finally { reader.close(); } }
Example 20
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 4 votes |
@Test public void testUseReaderSchemaParquet() throws IOException { // Create a schema with only a username, so we can test reading it // with an enhanced record structure. Schema oldRecordSchema = SchemaBuilder.record("org.kitesdk.data.user.OldUserRecord") .fields() .requiredString("username") .endRecord(); // create the dataset Dataset<Record> in = repo.create("ns", "in", new DatasetDescriptor.Builder() .format(Formats.PARQUET).schema(oldRecordSchema).build()); Dataset<Record> out = repo.create("ns", "out", new DatasetDescriptor.Builder() .format(Formats.PARQUET).schema(oldRecordSchema).build()); Record oldUser = new Record(oldRecordSchema); oldUser.put("username", "user"); DatasetWriter<Record> writer = in.newWriter(); try { writer.write(oldUser); } finally { writer.close(); } Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); // read data from updated dataset that has the new schema. // At this point, User class has the old schema PCollection<NewUserRecord> data = pipeline.read(CrunchDatasets.asSource(in.getUri(), NewUserRecord.class)); PCollection<NewUserRecord> processed = data.parallelDo(new UserRecordIdentityFn(), Avros.records(NewUserRecord.class)); pipeline.write(processed, CrunchDatasets.asTarget(out)); DatasetReader reader = out.newReader(); Assert.assertTrue("Pipeline failed.", pipeline.run().succeeded()); try { // there should be one record that is equal to our old user generic record. Assert.assertEquals(oldUser, reader.next()); Assert.assertFalse(reader.hasNext()); } finally { reader.close(); } }