Java Code Examples for org.tensorflow.framework.NodeDef#getInputCount()
The following examples show how to use
org.tensorflow.framework.NodeDef#getInputCount() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: Fill.java From nd4j with Apache License 2.0 | 6 votes |
@Override public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String, AttrValue> attributesForNode, GraphDef graph) { if(nodeDef.getInputCount() == 2) { val targetNode = TFGraphMapper.getInstance().getNodeWithNameFromGraph(graph,nodeDef.getInput(1)); val mapper = TFGraphMapper.getInstance(); val secondInputAsScalar = mapper.getNDArrayFromTensor("value",targetNode,graph); //must be scalar if(secondInputAsScalar.length() == 1) { addTArgument(secondInputAsScalar.getDouble(0)); } else { throw new ND4JIllegalStateException("Second input to node " + nodeDef + " should be scalar!"); } } }
Example 2
Source File: BaseAccumulation.java From nd4j with Apache License 2.0 | 5 votes |
protected boolean hasReductionIndices(NodeDef nodeDef) { for(int i = 0; i < nodeDef.getInputCount(); i++) { if(nodeDef.getInput(i).contains("reduction_indices")) { return true; } } return false; }
Example 3
Source File: Transpose.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String, AttrValue> attributesForNode, GraphDef graph) { super.initFromTensorFlow(nodeDef, initWith, attributesForNode, graph); //permute dimensions are not specified as second input if (nodeDef.getInputCount() < 2) return; NodeDef permuteDimsNode = null; for (int i = 0; i < graph.getNodeCount(); i++) { if (graph.getNode(i).getName().equals(nodeDef.getInput(1))) { permuteDimsNode = graph.getNode(i); } } INDArray permuteArrayOp = TFGraphMapper.getNDArrayFromTensor(permuteDimsNode); if (permuteArrayOp != null) { this.permuteDims = permuteArrayOp.data().asInt(); } //handle once properly mapped if (arg().getShape() == null || arg().getVariableType() == VariableType.PLACEHOLDER || arg().getArr() == null) { return; } INDArray arr = sameDiff.getArrForVarName(arg().name()); if(permuteArrayOp != null){ addInputArgument(arr, permuteArrayOp); } else { addInputArgument(arr); } if (arr != null && permuteDims == null) { this.permuteDims = ArrayUtil.reverseCopy(ArrayUtil.range(0, arr.rank())); } if (permuteDims != null && permuteDims.length < arg().getShape().length) throw new ND4JIllegalStateException("Illegal permute found. Not all dimensions specified"); }
Example 4
Source File: BaseReduceOp.java From deeplearning4j with Apache License 2.0 | 5 votes |
protected boolean hasReductionIndices(NodeDef nodeDef) { for(int i = 0; i < nodeDef.getInputCount(); i++) { if(nodeDef.getInput(i).contains("reduction_indices")) { return true; } } return false; }
Example 5
Source File: Concat.java From nd4j with Apache License 2.0 | 4 votes |
@Override public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String, AttrValue> attributesForNode, GraphDef graph) { int concatDimension = -1; String input = null; for(int i = 0; i < nodeDef.getInputCount(); i++) { if(nodeDef.getInput(i).contains("/concat_dim")) { input = nodeDef.getInput(i); break; } } //older versions may specify a concat_dim, usually it's the last argument if(input == null) { input = nodeDef.getInput(nodeDef.getInputCount() - 1); } val variable = initWith.getVariable(input); // concat dimension is only possible if (variable != null && variable.getArr() == null) { sameDiff.addPropertyToResolve(this, input); } else if (variable != null) { val arr = variable.getArr(); if (arr.length() == 1) { concatDimension = arr.getInt(0); } this.concatDimension = concatDimension; addIArgument(this.concatDimension); log.debug("Concat dimension: {}", concatDimension); } //don't pass both iArg and last axis down to libnd4j if(inputArguments().length == nodeDef.getInputCount()) { val inputArgs = inputArguments(); removeInputArgument(inputArgs[inputArguments().length - 1]); } sameDiff.removeArgFromFunction(input,this); }
Example 6
Source File: Transpose.java From nd4j with Apache License 2.0 | 4 votes |
@Override public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String, AttrValue> attributesForNode, GraphDef graph) { super.initFromTensorFlow(nodeDef, initWith, attributesForNode, graph); //permute dimensions re not specified as second input if (nodeDef.getInputCount() < 2) return; NodeDef permuteDimsNode = null; for (int i = 0; i < graph.getNodeCount(); i++) { if (graph.getNode(i).getName().equals(nodeDef.getInput(1))) { permuteDimsNode = graph.getNode(i); } } val permuteArrayOp = TFGraphMapper.getInstance().getNDArrayFromTensor("value", permuteDimsNode, graph); if (permuteArrayOp != null) { this.permuteDims = permuteArrayOp.data().asInt(); for (int i = 0; i < permuteDims.length; i++) { addIArgument(permuteDims[i]); } } //handle once properly mapped if (arg().getShape() == null) { return; } INDArray arr = sameDiff.getArrForVarName(arg().getVarName()); if (arr == null) { val arrVar = sameDiff.getVariable(arg().getVarName()); arr = arrVar.getWeightInitScheme().create(arrVar.getShape()); sameDiff.putArrayForVarName(arg().getVarName(), arr); } addInputArgument(arr); if (arr != null && permuteDims == null) { this.permuteDims = ArrayUtil.reverseCopy(ArrayUtil.range(0, arr.rank())); } if (permuteDims != null && permuteDims.length < arg().getShape().length) throw new ND4JIllegalStateException("Illegal permute found. Not all dimensions specified"); }
Example 7
Source File: GraphRunner.java From deeplearning4j with Apache License 2.0 | 4 votes |
private void initSessionAndStatusIfNeeded(org.tensorflow.framework.GraphDef graphDef1) { //infer the inputs and outputSchema for the graph Set<String> seenAsInput = new LinkedHashSet<>(); for(int i = 0; i < graphDef1.getNodeCount(); i++) { NodeDef node = graphDef1.getNode(i); for(int input = 0; input < node.getInputCount(); input++) { seenAsInput.add(node.getInput(input)); } } if(outputOrder == null) { outputOrder = new ArrayList<>(); log.trace("Attempting to automatically resolve tensorflow output names.."); //find the nodes that were not inputs to any nodes: these are the outputSchema for(int i = 0; i < graphDef1.getNodeCount(); i++) { if(!seenAsInput.contains(graphDef1.getNode(i).getName()) && !graphDef1.getNode(i).getOp().equals("Placeholder")) { outputOrder.add(graphDef1.getNode(i).getName()); } } //multiple names: purge any generated names from the output if(outputOrder.size() > 1) { Set<String> remove = new HashSet<>(); for (String name : outputOrder) { if(name.contains("/")) { remove.add(name); } } outputOrder.removeAll(remove); } } //setup and configure the session, factoring //in the ConfigObject as needed if(session == null) { initOptionsIfNeeded(); session = TF_NewSession(graph, options, status); if (TF_GetCode(status) != TF_OK) { throw new IllegalStateException("ERROR: Unable to open session " + TF_Message(status).getString()); } } }