Java Code Examples for org.dmg.pmml.tree.Node#setScore()
The following examples show how to use
org.dmg.pmml.tree.Node#setScore() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: RangerConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 6 votes |
private MiningModel encodeRegression(RGenericVector ranger, Schema schema){ RGenericVector forest = ranger.getGenericElement("forest"); ScoreEncoder scoreEncoder = new ScoreEncoder(){ @Override public Node encode(Node node, Number splitValue, RNumberVector<?> terminalClassCount){ node.setScore(splitValue); return node; } }; List<TreeModel> treeModels = encodeForest(forest, MiningFunction.REGRESSION, scoreEncoder, schema); MiningModel miningModel = new MiningModel(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(schema.getLabel())) .setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.AVERAGE, treeModels)); return miningModel; }
Example 2
Source File: TargetCategoryParser.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 6 votes |
@Override public VisitorAction visit(Node node){ PMMLObject parent = getParent(); if(parent instanceof TreeModel){ TreeModel treeModel = (TreeModel)parent; MiningFunction miningFunction = treeModel.getMiningFunction(); switch(miningFunction){ case CLASSIFICATION: break; default: return VisitorAction.SKIP; } } node.setScore(parseTargetValue(node.getScore())); return super.visit(node); }
Example 3
Source File: TreeModelCompactor.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
@Override public void exitNode(Node node){ Predicate predicate = node.getPredicate(); if(predicate instanceof True){ Node parentNode = getParentNode(); if(parentNode == null){ return; } if((MiningFunction.REGRESSION).equals(this.miningFunction)){ parentNode.setScore(null); initScore(parentNode, node); replaceChildWithGrandchildren(parentNode, node); } else if((MiningFunction.CLASSIFICATION).equals(this.miningFunction)){ // Replace intermediate nodes, but not terminal nodes if(node.hasNodes()){ replaceChildWithGrandchildren(parentNode, node); } } else { throw new IllegalArgumentException(); } } }
Example 4
Source File: TreeModelFlattener.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
@Override public void exitNode(Node node){ Predicate predicate = node.getPredicate(); if(predicate instanceof True){ Node parentNode = getParentNode(); if(parentNode == null){ return; } List<Node> parentChildren = parentNode.getNodes(); if(parentChildren.size() != 1){ return; } boolean success = parentChildren.remove(node); if(!success){ throw new IllegalArgumentException(); } // End if if((MiningFunction.REGRESSION).equals(this.miningFunction)){ parentNode.setScore(null); initScore(parentNode, node); } else if((MiningFunction.CLASSIFICATION).equals(this.miningFunction)){ initScoreDistribution(parentNode, node); } else { throw new IllegalArgumentException(); } } }
Example 5
Source File: NodeScoreParser.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 5 votes |
@Override public VisitorAction visit(Node node){ if(node.hasScore()){ Object score = node.getScore(); if(score instanceof String){ score = parseScore(score); node.setScore(score); } } return super.visit(node); }
Example 6
Source File: RDFUpdate.java From oryx with Apache License 2.0 | 4 votes |
private TreeModel toTreeModel(DecisionTreeModel dtModel, CategoricalValueEncodings categoricalValueEncodings, IntLongMap nodeIDCounts) { boolean classificationTask = dtModel.algo().equals(Algo.Classification()); Preconditions.checkState(classificationTask == inputSchema.isClassification()); Node root = new ComplexNode(); root.setId("r"); Queue<Node> modelNodes = new ArrayDeque<>(); modelNodes.add(root); Queue<Pair<org.apache.spark.mllib.tree.model.Node,Split>> treeNodes = new ArrayDeque<>(); treeNodes.add(new Pair<>(dtModel.topNode(), null)); while (!treeNodes.isEmpty()) { Pair<org.apache.spark.mllib.tree.model.Node,Split> treeNodePredicate = treeNodes.remove(); Node modelNode = modelNodes.remove(); // This is the decision that got us here from the parent, if any; // not the predicate at this node Predicate predicate = buildPredicate(treeNodePredicate.getSecond(), categoricalValueEncodings); modelNode.setPredicate(predicate); org.apache.spark.mllib.tree.model.Node treeNode = treeNodePredicate.getFirst(); long nodeCount = nodeIDCounts.get(treeNode.id()); modelNode.setRecordCount((double) nodeCount); if (treeNode.isLeaf()) { Predict prediction = treeNode.predict(); int targetEncodedValue = (int) prediction.predict(); if (classificationTask) { Map<Integer,String> targetEncodingToValue = categoricalValueEncodings.getEncodingValueMap(inputSchema.getTargetFeatureIndex()); double predictedProbability = prediction.prob(); Preconditions.checkState(predictedProbability >= 0.0 && predictedProbability <= 1.0); // Not sure how nodeCount == 0 can happen but it does in the MLlib model long effectiveNodeCount = Math.max(1, nodeCount); // Problem: MLlib only gives a predicted class and its probability, and no distribution // over the rest. Infer that the rest of the probability is evenly distributed. double restProbability = (1.0 - predictedProbability) / (targetEncodingToValue.size() - 1); targetEncodingToValue.forEach((encodedValue, value) -> { double probability = encodedValue == targetEncodedValue ? predictedProbability : restProbability; // Yes, recordCount may be fractional; it's a relative indicator double recordCount = probability * effectiveNodeCount; if (recordCount > 0.0) { ScoreDistribution distribution = new ScoreDistribution(value, recordCount); // Not "confident" enough in the "probability" to call it one distribution.setConfidence(probability); modelNode.addScoreDistributions(distribution); } }); } else { modelNode.setScore(Double.toString(targetEncodedValue)); } } else { Split split = treeNode.split().get(); Node positiveModelNode = new ComplexNode().setId(modelNode.getId() + "+"); Node negativeModelNode = new ComplexNode().setId(modelNode.getId() + "-"); modelNode.addNodes(positiveModelNode, negativeModelNode); org.apache.spark.mllib.tree.model.Node rightTreeNode = treeNode.rightNode().get(); org.apache.spark.mllib.tree.model.Node leftTreeNode = treeNode.leftNode().get(); boolean defaultRight = nodeIDCounts.get(rightTreeNode.id()) > nodeIDCounts.get(leftTreeNode.id()); modelNode.setDefaultChild(defaultRight ? positiveModelNode.getId() : negativeModelNode.getId()); // Right node is "positive", so carries the predicate. It must evaluate first // and therefore come first in the tree modelNodes.add(positiveModelNode); modelNodes.add(negativeModelNode); treeNodes.add(new Pair<>(rightTreeNode, split)); treeNodes.add(new Pair<>(leftTreeNode, null)); } } return new TreeModel() .setNode(root) .setSplitCharacteristic(TreeModel.SplitCharacteristic.BINARY_SPLIT) .setMissingValueStrategy(TreeModel.MissingValueStrategy.DEFAULT_CHILD); }
Example 7
Source File: BinaryTreeConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 3 votes |
static private Node encodeRegressionScore(Node node, RDoubleVector probabilities){ if(probabilities.size() != 1){ throw new IllegalArgumentException(); } Double probability = probabilities.asScalar(); node.setScore(probability); return node; }
Example 8
Source File: RangerConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 3 votes |
private MiningModel encodeClassification(RGenericVector ranger, Schema schema){ RGenericVector forest = ranger.getGenericElement("forest"); RStringVector levels = forest.getStringElement("levels"); ScoreEncoder scoreEncoder = new ScoreEncoder(){ @Override public Node encode(Node node, Number splitValue, RNumberVector<?> terminalClassCount){ int index = ValueUtil.asInt(splitValue); if(terminalClassCount != null){ throw new IllegalArgumentException(); } node.setScore(levels.getValue(index - 1)); return node; } }; List<TreeModel> treeModels = encodeForest(forest, MiningFunction.CLASSIFICATION, scoreEncoder, schema); MiningModel miningModel = new MiningModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(schema.getLabel())) .setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.MAJORITY_VOTE, treeModels)); return miningModel; }