Java Code Examples for org.tensorflow.Graph#importGraphDef()
The following examples show how to use
org.tensorflow.Graph#importGraphDef() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TensorFlowGraphModel.java From zoltar with Apache License 2.0 | 6 votes |
/** * Note: Please use Models from zoltar-models module. * * <p>Creates a TensorFlow model based on a frozen, serialized TensorFlow {@link Graph}. * * @param id model id @{link Model.Id}. * @param graphDef byte array representing the TensorFlow {@link Graph} definition. * @param config ConfigProto config for TensorFlow {@link Session}. * @param prefix a prefix that will be prepended to names in graphDef. */ public static TensorFlowGraphModel create( final Model.Id id, final byte[] graphDef, @Nullable final ConfigProto config, @Nullable final String prefix) { final Graph graph = new Graph(); final Session session = new Session(graph, config != null ? config.toByteArray() : null); final long loadStart = System.currentTimeMillis(); if (prefix == null) { LOG.debug("Loading graph definition without prefix"); graph.importGraphDef(graphDef); } else { LOG.debug("Loading graph definition with prefix: {}", prefix); graph.importGraphDef(graphDef, prefix); } LOG.info("TensorFlow graph loaded in {} ms", System.currentTimeMillis() - loadStart); return new AutoValue_TensorFlowGraphModel(id, graph, session); }
Example 2
Source File: AbstractClassifier.java From tensorboot with Apache License 2.0 | 5 votes |
/** * Initialize classifier * @param graphBytes Model graph binary data * @param inputLayerName Input layer name * @param outputLayerName Output layer name */ public void init(byte[] graphBytes, String inputLayerName, String outputLayerName) { Assert.notNull(graphBytes, "Model data shouldn't be null"); Assert.notNull(inputLayerName, "Input layer name shouldn't be null"); Assert.notNull(outputLayerName, "Output layer name shouldn't be null"); model = new Graph(); model.importGraphDef(graphBytes); this.inputLayerName = inputLayerName; this.outputLayerName = outputLayerName; }
Example 3
Source File: TensorFlowService.java From tensorflow-spring-cloud-stream-app-starters with Apache License 2.0 | 5 votes |
public TensorFlowService(Resource modelLocation) throws IOException { try (InputStream is = modelLocation.getInputStream()) { graph = new Graph(); logger.info("Loading TensorFlow graph model: " + modelLocation); graph.importGraphDef(toByteArray(buffer(is))); logger.info("TensorFlow Graph Model Ready To Serve!"); } }
Example 4
Source File: RNTensorFlowGraphModule.java From react-native-tensorflow with Apache License 2.0 | 5 votes |
@ReactMethod public void importGraphDefWithPrefix(String id, String graphDef, String prefix, Promise promise) { try { Graph graph = graphs.get(id); graph.importGraphDef(Base64.decode(graphDef, Base64.DEFAULT), prefix); promise.resolve(true); } catch (Exception e) { promise.reject(e); } }
Example 5
Source File: RNTensorflowInference.java From react-native-tensorflow with Apache License 2.0 | 5 votes |
private static TfContext createContext(ReactContext reactContext, String model) throws IOException { byte[] b = new ResourceManager(reactContext).loadResource(model); Graph graph = new Graph(); graph.importGraphDef(b); Session session = new Session(graph); Session.Runner runner = session.runner(); return new TfContext(session, runner, graph); }
Example 6
Source File: TensorFlowService.java From tensorflow with Apache License 2.0 | 5 votes |
public TensorFlowService(Resource modelLocation) { if (logger.isInfoEnabled()) { logger.info("Loading TensorFlow graph model: " + modelLocation); } graph = new Graph(); byte[] model = new ModelExtractor().getModel(modelLocation); graph.importGraphDef(model); }
Example 7
Source File: YOLO.java From cineast with MIT License | 5 votes |
public YOLO() { byte[] GRAPH_DEF = new byte[0]; try { GRAPH_DEF = Files .readAllBytes((Paths.get("resources/YOLO/yolo-voc.pb"))); } catch (IOException e) { throw new RuntimeException( "could not load graph for YOLO: " + LogHelper.getStackTrace(e)); } yoloGraph = new Graph(); yoloGraph.importGraphDef(GRAPH_DEF); yoloSession = new Session(yoloGraph); preprocessingGraph = new Graph(); GraphBuilder graphBuilder = new GraphBuilder(preprocessingGraph); Output<Float> imageFloat = graphBuilder.placeholder("T", Float.class); final int[] size = new int[]{416, 416}; final Output<Float> output = graphBuilder.resizeBilinear( // Resize using bilinear interpolation graphBuilder.expandDims( // Increase the output tensors dimension imageFloat, graphBuilder.constant("make_batch", 0)), graphBuilder.constant("size", size) ); imageOutName = output.op().name(); preprocessingSession = new Session(preprocessingGraph); }
Example 8
Source File: FaceRecognizer.java From server_face_recognition with GNU General Public License v3.0 | 4 votes |
private FaceRecognizer() { graph = new Graph(); graph.importGraphDef(loadGraphDef()); faceDetector = UserFaceDetector.create(); }
Example 9
Source File: DLSegment.java From orbit-image-analysis with GNU General Public License v3.0 | 4 votes |
public static Session buildSessionBytes(byte[] graphDef) { Graph g = new Graph(); g.importGraphDef(graphDef); Session s = new Session(g); return s; }
Example 10
Source File: MRCNNBrainDetector.java From orbit-image-analysis with GNU General Public License v3.0 | 4 votes |
public Graph loadGraph(byte[] graphDef) { logger.info("TF version "+TensorFlow.version()); Graph g = new Graph(); g.importGraphDef(graphDef); return g; }
Example 11
Source File: MRCNNCorpusCallosum.java From orbit-image-analysis with GNU General Public License v3.0 | 4 votes |
public Graph loadGraph(byte[] graphDef) { logger.info("TF version "+TensorFlow.version()); Graph g = new Graph(); g.importGraphDef(graphDef); return g; }
Example 12
Source File: InstSegMaskRCNN.java From orbit-image-analysis with GNU General Public License v3.0 | 4 votes |
public Graph loadGraph(byte[] graphDef) { logger.info("TF version "+TensorFlow.version()); Graph g = new Graph(); g.importGraphDef(graphDef); return g; }
Example 13
Source File: Inception5h.java From cineast with MIT License | 4 votes |
public Inception5h(List<String> outputOperations) { byte[] graphDef = new byte[0]; try { graphDef = Files .readAllBytes((Paths.get("resources/inception5h/tensorflow_inception_graph.pb"))); } catch (IOException e) { throw new RuntimeException( "could not load graph for Inception5h: " + LogHelper.getStackTrace(e)); } classificationGraph = new Graph(); classificationGraph.importGraphDef(graphDef); classificationSession = new Session(classificationGraph); preprocessingGraph = new Graph(); GraphBuilder b = new GraphBuilder(preprocessingGraph); preProcessingSession = new Session(preprocessingGraph); final int H = 224; final int W = 224; Output<Float> imageFloat = b.placeholder("T", Float.class); output = b.resizeBilinear( b.expandDims( imageFloat, b.constant("make_batch", 0)), b.constant("size", new int[]{H, W})); if (outputOperations != null && !outputOperations.isEmpty()) { this.outputOperations = new ArrayList<>(); this.outputOperations.addAll( GraphHelper.filterOperations(outputOperations, classificationGraph) ); } else { this.outputOperations = new ArrayList<>(1); this.outputOperations.add("output2"); //default output } }