Java Code Examples for org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression#estimateErrorVariance()
The following examples show how to use
org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression#estimateErrorVariance() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: Forecast.java From xDrip with GNU General Public License v3.0 | 6 votes |
@Override public void setValues(double[] y, double[] x) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)", y.length, x.length)); } double[][] xData = new double[x.length][]; for (int i = 0; i < x.length; i++) { // the implementation determines how to produce a vector of predictors from a single x xData[i] = xVector(x[i]); } if (logY()) { // in some models we are predicting ln y, so we replace each y with ln y y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given for (int i = 0; i < x.length; i++) { y[i] = Math.log(y[i]); } } final OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression(); ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired ols.newSampleData(y, xData); // provide the data to the model coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs last_error_rate = ols.estimateErrorVariance(); Log.d(TAG, getClass().getSimpleName() + " Forecast Error rate: errorvar:" + JoH.qs(last_error_rate, 4) + " regssionvar:" + JoH.qs(ols.estimateRegressandVariance(), 4) + " stderror:" + JoH.qs(ols.estimateRegressionStandardError(), 4)); }
Example 2
Source File: Forecast.java From xDrip with GNU General Public License v3.0 | 6 votes |
@Override public void setValues(double[] y, double[] x) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)", y.length, x.length)); } double[][] xData = new double[x.length][]; for (int i = 0; i < x.length; i++) { // the implementation determines how to produce a vector of predictors from a single x xData[i] = xVector(x[i]); } if (logY()) { // in some models we are predicting ln y, so we replace each y with ln y y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given for (int i = 0; i < x.length; i++) { y[i] = Math.log(y[i]); } } final OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression(); ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired ols.newSampleData(y, xData); // provide the data to the model coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs last_error_rate = ols.estimateErrorVariance(); Log.d(TAG, getClass().getSimpleName() + " Forecast Error rate: errorvar:" + JoH.qs(last_error_rate, 4) + " regssionvar:" + JoH.qs(ols.estimateRegressandVariance(), 4) + " stderror:" + JoH.qs(ols.estimateRegressionStandardError(), 4)); }
Example 3
Source File: Forecast.java From xDrip-plus with GNU General Public License v3.0 | 6 votes |
@Override public void setValues(double[] y, double[] x) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)", y.length, x.length)); } double[][] xData = new double[x.length][]; for (int i = 0; i < x.length; i++) { // the implementation determines how to produce a vector of predictors from a single x xData[i] = xVector(x[i]); } if (logY()) { // in some models we are predicting ln y, so we replace each y with ln y y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given for (int i = 0; i < x.length; i++) { y[i] = Math.log(y[i]); } } final OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression(); ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired ols.newSampleData(y, xData); // provide the data to the model coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs last_error_rate = ols.estimateErrorVariance(); Log.d(TAG, getClass().getSimpleName() + " Forecast Error rate: errorvar:" + JoH.qs(last_error_rate, 4) + " regssionvar:" + JoH.qs(ols.estimateRegressandVariance(), 4) + " stderror:" + JoH.qs(ols.estimateRegressionStandardError(), 4)); }
Example 4
Source File: Forecast.java From xDrip-plus with GNU General Public License v3.0 | 6 votes |
@Override public void setValues(double[] y, double[] x) { if (x.length != y.length) { throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)", y.length, x.length)); } double[][] xData = new double[x.length][]; for (int i = 0; i < x.length; i++) { // the implementation determines how to produce a vector of predictors from a single x xData[i] = xVector(x[i]); } if (logY()) { // in some models we are predicting ln y, so we replace each y with ln y y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given for (int i = 0; i < x.length; i++) { y[i] = Math.log(y[i]); } } final OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression(); ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired ols.newSampleData(y, xData); // provide the data to the model coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs last_error_rate = ols.estimateErrorVariance(); Log.d(TAG, getClass().getSimpleName() + " Forecast Error rate: errorvar:" + JoH.qs(last_error_rate, 4) + " regssionvar:" + JoH.qs(ols.estimateRegressandVariance(), 4) + " stderror:" + JoH.qs(ols.estimateRegressionStandardError(), 4)); }