Java Code Examples for org.nd4j.linalg.factory.Nd4j#read()
The following examples show how to use
org.nd4j.linalg.factory.Nd4j#read() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: Word2VecPerformer.java From deeplearning4j with Apache License 2.0 | 6 votes |
public void setup(SparkConf conf) { useAdaGrad = conf.getBoolean(Word2VecVariables.ADAGRAD, false); negative = conf.getDouble(Word2VecVariables.NEGATIVE, 5); numWords = conf.getInt(Word2VecVariables.NUM_WORDS, 1); window = conf.getInt(Word2VecVariables.WINDOW, 5); alpha = conf.getDouble(Word2VecVariables.ALPHA, 0.025f); minAlpha = conf.getDouble(Word2VecVariables.MIN_ALPHA, 1e-2f); totalWords = conf.getInt(Word2VecVariables.NUM_WORDS, 1); vectorLength = conf.getInt(Word2VecVariables.VECTOR_LENGTH, 100); initExpTable(); if (negative > 0 && conf.contains(Word2VecVariables.TABLE)) { ByteArrayInputStream bis = new ByteArrayInputStream(conf.get(Word2VecVariables.TABLE).getBytes()); DataInputStream dis = new DataInputStream(bis); table = Nd4j.read(dis); } }
Example 2
Source File: ZipTests.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testZip() throws Exception { File testFile = File.createTempFile("adasda","Dsdasdea"); INDArray arr = Nd4j.create(new double[]{1,2,3,4,5,6,7,8,9,0}); final FileOutputStream fileOut = new FileOutputStream(testFile); final ZipOutputStream zipOut = new ZipOutputStream(fileOut); zipOut.putNextEntry(new ZipEntry("params")); Nd4j.write(zipOut, arr); zipOut.flush(); zipOut.close(); final FileInputStream fileIn = new FileInputStream(testFile); final ZipInputStream zipIn = new ZipInputStream(fileIn); ZipEntry entry = zipIn.getNextEntry(); INDArray read = Nd4j.read(zipIn); zipIn.close(); assertEquals(arr, read); }
Example 3
Source File: CompressionTests.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testThresholdSerialization1() throws Exception { INDArray initial = Nd4j.create(new double[] {-1.0, -2.0, 0.0, 0.0, 1.0, 1.0}); INDArray exp_0 = Nd4j.create(new double[] {-1.0 + 1e-3, -2.0 + 1e-3, 0.0, 0.0, 1.0 - 1e-3, 1.0 - 1e-3}); INDArray exp_1 = Nd4j.create(new double[] {-1e-3, -1e-3, 0.0, 0.0, 1e-3, 1e-3}); //Nd4j.getCompressor().getCompressor("THRESHOLD").configure(1e-3); INDArray compressed = Nd4j.getExecutioner().thresholdEncode(initial, 1e-3f); assertEquals(exp_0, initial); ByteArrayOutputStream baos = new ByteArrayOutputStream(); Nd4j.write(baos, compressed); INDArray serialized = Nd4j.read(new ByteArrayInputStream(baos.toByteArray())); INDArray decompressed_copy = Nd4j.create(initial.length()); Nd4j.getExecutioner().thresholdDecode(serialized, decompressed_copy); assertEquals(exp_1, decompressed_copy); }
Example 4
Source File: RegressionTest100b3.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test @Ignore("AB 2019/05/23 - Failing on linux-x86_64-cuda-9.2 - see issue #7657") public void testYoloHouseNumber() throws Exception { File f = Resources.asFile("regression_testing/100b3/HouseNumberDetection_100b3.bin"); ComputationGraph net = ComputationGraph.load(f, true); int nBoxes = 5; int nClasses = 10; ConvolutionLayer cl = (ConvolutionLayer)((LayerVertex)net.getConfiguration().getVertices().get("convolution2d_9")).getLayerConf().getLayer(); assertEquals(nBoxes * (5 + nClasses), cl.getNOut()); assertEquals(new ActivationIdentity(), cl.getActivationFn()); assertEquals(ConvolutionMode.Same, cl.getConvolutionMode()); assertEquals(new WeightInitXavier(), cl.getWeightInitFn()); assertArrayEquals(new int[]{1,1}, cl.getKernelSize()); assertArrayEquals(new int[]{1,1}, cl.getKernelSize()); INDArray outExp; File f2 = Resources.asFile("regression_testing/100b3/HouseNumberDetection_Output_100b3.bin"); try(DataInputStream dis = new DataInputStream(new FileInputStream(f2))){ outExp = Nd4j.read(dis); } INDArray in; File f3 = Resources.asFile("regression_testing/100b3/HouseNumberDetection_Input_100b3.bin"); try(DataInputStream dis = new DataInputStream(new FileInputStream(f3))){ in = Nd4j.read(dis); } INDArray outAct = net.outputSingle(in); boolean eq = outExp.equalsWithEps(outAct.castTo(outExp.dataType()), 1e-3); assertTrue(eq); }
Example 5
Source File: LargeSerDeTests.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test @Ignore // this should be commented out, since it requires approx 10GB ram to run public void testLargeArraySerDe_2() throws Exception { INDArray arrayA = Nd4j.createUninitialized(100000, 12500); log.info("Shape: {}; Length: {}", arrayA.shape(), arrayA.length()); val tmpFile = File.createTempFile("sdsds", "sdsd"); tmpFile.deleteOnExit(); log.info("Starting serialization..."); val sS = System.currentTimeMillis(); try (val fos = new FileOutputStream(tmpFile); val bos = new BufferedOutputStream(fos); val dos = new DataOutputStream(bos)) { Nd4j.write(arrayA, dos); arrayA = null; System.gc(); } System.gc(); val sE = System.currentTimeMillis(); log.info("Starting deserialization..."); val dS = System.currentTimeMillis(); try (val fis = new FileInputStream(tmpFile); val bis = new BufferedInputStream(fis); val dis = new DataInputStream(bis)) { arrayA = Nd4j.read(dis); } val dE = System.currentTimeMillis(); log.info("Timings: {Ser : {} ms; De: {} ms;}", sE - sS, dE - dS); }
Example 6
Source File: RegressionTest100a.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testVae() throws Exception { File f = Resources.asFile("regression_testing/100a/VaeMNISTAnomaly_100a.bin"); MultiLayerNetwork net = MultiLayerNetwork.load(f, true); VariationalAutoencoder l0 = (VariationalAutoencoder) net.getLayer(0).conf().getLayer(); assertEquals(new ActivationLReLU(), l0.getActivationFn()); assertEquals(32, l0.getNOut()); assertArrayEquals(new int[]{256, 256}, l0.getEncoderLayerSizes()); assertArrayEquals(new int[]{256, 256}, l0.getDecoderLayerSizes()); assertEquals(new WeightInitXavier(), l0.getWeightInitFn()); assertEquals(new WeightDecay(1e-4, false), TestUtils.getWeightDecayReg(l0)); assertEquals(new Adam(0.05), l0.getIUpdater()); INDArray outExp; File f2 = Resources.asFile("regression_testing/100a/VaeMNISTAnomaly_Output_100a.bin"); try(DataInputStream dis = new DataInputStream(new FileInputStream(f2))){ outExp = Nd4j.read(dis); } INDArray in; File f3 = Resources.asFile("regression_testing/100a/VaeMNISTAnomaly_Input_100a.bin"); try(DataInputStream dis = new DataInputStream(new FileInputStream(f3))){ in = Nd4j.read(dis); } INDArray outAct = net.output(in); assertEquals(outExp, outAct); }
Example 7
Source File: MiniBatchFileDataSetIterator.java From deeplearning4j with Apache License 2.0 | 5 votes |
private DataSet read(int idx) throws IOException { BufferedInputStream bis = new BufferedInputStream(new FileInputStream(paths.get(idx)[0])); DataInputStream dis = new DataInputStream(bis); BufferedInputStream labelInputStream = new BufferedInputStream(new FileInputStream(paths.get(idx)[1])); DataInputStream labelDis = new DataInputStream(labelInputStream); DataSet d = new DataSet(Nd4j.read(dis), Nd4j.read(labelDis)); dis.close(); labelDis.close(); return d; }
Example 8
Source File: Nd4jBase64.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * Create an ndarray from a base 64 * representation * @param base64 the base 64 to convert * @return the ndarray from base 64 */ public static INDArray fromBase64(String base64) { byte[] arr = Base64.decodeBase64(base64); ByteArrayInputStream bis = new ByteArrayInputStream(arr); DataInputStream dis = new DataInputStream(bis); return Nd4j.read(dis); }
Example 9
Source File: TestSerialization.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testSerializationOnViewsNd4jWriteRead() throws Exception { int length = 100; INDArray arrC = Nd4j.linspace(1, length, length).reshape('c', 10, 10); INDArray arrF = Nd4j.linspace(1, length, length).reshape('f', 10, 10); INDArray subC = arrC.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10)); INDArray subF = arrF.get(NDArrayIndex.interval(5, 10), NDArrayIndex.interval(5, 10)); ByteArrayOutputStream baos = new ByteArrayOutputStream(); try (DataOutputStream dos = new DataOutputStream(baos)) { Nd4j.write(subC, dos); } byte[] bytesC = baos.toByteArray(); baos = new ByteArrayOutputStream(); try (DataOutputStream dos = new DataOutputStream(baos)) { Nd4j.write(subF, dos); } byte[] bytesF = baos.toByteArray(); INDArray arr2C; try (DataInputStream dis = new DataInputStream(new ByteArrayInputStream(bytesC))) { arr2C = Nd4j.read(dis); } INDArray arr2F; try (DataInputStream dis = new DataInputStream(new ByteArrayInputStream(bytesF))) { arr2F = Nd4j.read(dis); } assertEquals(subC, arr2C); assertEquals(subF, arr2F); }
Example 10
Source File: RegressionTest100b6.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testYoloHouseNumber() throws Exception { File f = Resources.asFile("regression_testing/100b6/HouseNumberDetection_100b6.bin"); ComputationGraph net = ComputationGraph.load(f, true); int nBoxes = 5; int nClasses = 10; ConvolutionLayer cl = (ConvolutionLayer) ((LayerVertex) net.getConfiguration().getVertices() .get("convolution2d_9")).getLayerConf().getLayer(); assertEquals(nBoxes * (5 + nClasses), cl.getNOut()); assertEquals(new ActivationIdentity(), cl.getActivationFn()); assertEquals(ConvolutionMode.Same, cl.getConvolutionMode()); assertEquals(new WeightInitXavier(), cl.getWeightInitFn()); assertArrayEquals(new int[]{1, 1}, cl.getKernelSize()); INDArray outExp; File f2 = Resources.asFile("regression_testing/100b6/HouseNumberDetection_Output_100b6.bin"); try (DataInputStream dis = new DataInputStream(new FileInputStream(f2))) { outExp = Nd4j.read(dis); } INDArray in; File f3 = Resources.asFile("regression_testing/100b6/HouseNumberDetection_Input_100b6.bin"); try (DataInputStream dis = new DataInputStream(new FileInputStream(f3))) { in = Nd4j.read(dis); } INDArray outAct = net.outputSingle(in); boolean eq = outExp.equalsWithEps(outAct.castTo(outExp.dataType()), 1e-3); assertTrue(eq); }
Example 11
Source File: NDArrayTestsFortran.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testReadWrite() throws Exception { INDArray write = Nd4j.linspace(1, 4, 4); ByteArrayOutputStream bos = new ByteArrayOutputStream(); DataOutputStream dos = new DataOutputStream(bos); Nd4j.write(write, dos); ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray()); DataInputStream dis = new DataInputStream(bis); INDArray read = Nd4j.read(dis); assertEquals(write, read); }
Example 12
Source File: MultiHybridSerializerStrategy.java From deeplearning4j with Apache License 2.0 | 4 votes |
private static NormalizerStats readMinMaxStats(DataInputStream dis) throws IOException { return new MinMaxStats(Nd4j.read(dis), Nd4j.read(dis)); }
Example 13
Source File: CompressionSerDeTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testAutoDecompression2() throws Exception { INDArray array = Nd4j.linspace(1, 10, 11, DataType.DOUBLE); INDArray compressed = Nd4j.getCompressor().compress(array, "GZIP"); ByteArrayOutputStream bos = new ByteArrayOutputStream(); Nd4j.write(bos, compressed); ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray()); System.out.println("Restoring -------------------------"); INDArray result = Nd4j.read(bis); System.out.println("Decomp -------------------------"); INDArray decomp = Nd4j.getCompressor().decompress(result); assertEquals(array, decomp); }
Example 14
Source File: TensorFlowImportTest.java From nd4j with Apache License 2.0 | 4 votes |
@Test public void testIntermediate1() throws Exception { Nd4j.create(1); val tg = TFGraphMapper.getInstance().importGraph(new ClassPathResource("tf_graphs/tensorflow_inception_graph.pb").getInputStream()); assertTrue(tg.getVariable("input") != null); // assertTrue(tg.getVariableSpace().getVariable("input").isPlaceholder()); val ipod = Nd4j.read(new DataInputStream(new ClassPathResource("tf_graphs/ipod.nd4").getInputStream())); tg.updateVariable("input",ipod); val buffer = tg.asFlatBuffers(); assertNotNull(buffer); }
Example 15
Source File: RegressionTest100b4.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testLSTM() throws Exception { File f = Resources.asFile("regression_testing/100b4/GravesLSTMCharModelingExample_100b4.bin"); MultiLayerNetwork net = MultiLayerNetwork.load(f, true); LSTM l0 = (LSTM) net.getLayer(0).conf().getLayer(); assertEquals(new ActivationTanH(), l0.getActivationFn()); assertEquals(200, l0.getNOut()); assertEquals(new WeightInitXavier(), l0.getWeightInitFn()); assertEquals(new L2Regularization(0.0001), TestUtils.getL2Reg(l0)); assertEquals(new Adam(0.005), l0.getIUpdater()); LSTM l1 = (LSTM) net.getLayer(1).conf().getLayer(); assertEquals(new ActivationTanH(), l1.getActivationFn()); assertEquals(200, l1.getNOut()); assertEquals(new WeightInitXavier(), l1.getWeightInitFn()); assertEquals(new L2Regularization(0.0001), TestUtils.getL2Reg(l1)); assertEquals(new Adam(0.005), l1.getIUpdater()); RnnOutputLayer l2 = (RnnOutputLayer) net.getLayer(2).conf().getLayer(); assertEquals(new ActivationSoftmax(), l2.getActivationFn()); assertEquals(77, l2.getNOut()); assertEquals(new WeightInitXavier(), l2.getWeightInitFn()); assertEquals(new L2Regularization(0.0001), TestUtils.getL2Reg(l2)); assertEquals(new Adam(0.005), l2.getIUpdater()); assertEquals(BackpropType.TruncatedBPTT, net.getLayerWiseConfigurations().getBackpropType()); assertEquals(50, net.getLayerWiseConfigurations().getTbpttBackLength()); assertEquals(50, net.getLayerWiseConfigurations().getTbpttFwdLength()); INDArray outExp; File f2 = Resources.asFile("regression_testing/100b4/GravesLSTMCharModelingExample_Output_100b4.bin"); try (DataInputStream dis = new DataInputStream(new FileInputStream(f2))) { outExp = Nd4j.read(dis); } INDArray in; File f3 = Resources.asFile("regression_testing/100b4/GravesLSTMCharModelingExample_Input_100b4.bin"); try (DataInputStream dis = new DataInputStream(new FileInputStream(f3))) { in = Nd4j.read(dis); } INDArray outAct = net.output(in); assertEquals(outExp, outAct); }
Example 16
Source File: MultiHybridSerializerStrategy.java From nd4j with Apache License 2.0 | 4 votes |
private static NormalizerStats readDistributionStats(DataInputStream dis) throws IOException { return new DistributionStats(Nd4j.read(dis), Nd4j.read(dis)); }
Example 17
Source File: MultiHybridSerializerStrategy.java From nd4j with Apache License 2.0 | 4 votes |
private static NormalizerStats readMinMaxStats(DataInputStream dis) throws IOException { return new MinMaxStats(Nd4j.read(dis), Nd4j.read(dis)); }
Example 18
Source File: RegressionTest100a.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testGravesLSTM() throws Exception { File f = Resources.asFile("regression_testing/100a/GravesLSTMCharModelingExample_100a.bin"); MultiLayerNetwork net = MultiLayerNetwork.load(f, true); GravesLSTM l0 = (GravesLSTM) net.getLayer(0).conf().getLayer(); assertEquals(new ActivationTanH(), l0.getActivationFn()); assertEquals(200, l0.getNOut()); assertEquals(new WeightInitXavier(), l0.getWeightInitFn()); assertEquals(new WeightDecay(0.001, false), TestUtils.getWeightDecayReg(l0)); assertEquals(new RmsProp(0.1), l0.getIUpdater()); GravesLSTM l1 = (GravesLSTM) net.getLayer(1).conf().getLayer(); assertEquals(new ActivationTanH(), l1.getActivationFn()); assertEquals(200, l1.getNOut()); assertEquals(new WeightInitXavier(), l1.getWeightInitFn()); assertEquals(new WeightDecay(0.001, false), TestUtils.getWeightDecayReg(l1)); assertEquals(new RmsProp(0.1), l1.getIUpdater()); RnnOutputLayer l2 = (RnnOutputLayer) net.getLayer(2).conf().getLayer(); assertEquals(new ActivationSoftmax(), l2.getActivationFn()); assertEquals(77, l2.getNOut()); assertEquals(new WeightInitXavier(), l2.getWeightInitFn()); assertEquals(new WeightDecay(0.001, false), TestUtils.getWeightDecayReg(l0)); assertEquals(new RmsProp(0.1), l0.getIUpdater()); assertEquals(BackpropType.TruncatedBPTT, net.getLayerWiseConfigurations().getBackpropType()); assertEquals(50, net.getLayerWiseConfigurations().getTbpttBackLength()); assertEquals(50, net.getLayerWiseConfigurations().getTbpttFwdLength()); INDArray outExp; File f2 = Resources.asFile("regression_testing/100a/GravesLSTMCharModelingExample_Output_100a.bin"); try(DataInputStream dis = new DataInputStream(new FileInputStream(f2))){ outExp = Nd4j.read(dis); } INDArray in; File f3 = Resources.asFile("regression_testing/100a/GravesLSTMCharModelingExample_Input_100a.bin"); try(DataInputStream dis = new DataInputStream(new FileInputStream(f3))){ in = Nd4j.read(dis); } INDArray outAct = net.output(in); assertEquals(outExp, outAct); }
Example 19
Source File: HalfOpsTests.java From nd4j with Apache License 2.0 | 3 votes |
@Test public void testHalfToFloat1() throws Exception { File tempFile = File.createTempFile("dsadasd","dsdfasd"); tempFile.deleteOnExit(); INDArray array = Nd4j.linspace(1, 100, 100); DataOutputStream stream = new DataOutputStream(new FileOutputStream(tempFile)); Nd4j.write(array, stream); DataInputStream dis = new DataInputStream(new FileInputStream(tempFile)); INDArray restoredFP16 = Nd4j.read(dis); //assertEquals(array, restoredFP16); DataTypeUtil.setDTypeForContext(DataBuffer.Type.FLOAT); assertEquals(DataBuffer.Type.FLOAT, Nd4j.dataType()); log.error("--------------------"); dis = new DataInputStream(new FileInputStream(tempFile)); INDArray expFP32 = Nd4j.linspace(1, 100, 100); INDArray restoredFP32 = Nd4j.read(dis); CudaContext context = (CudaContext) AtomicAllocator.getInstance().getDeviceContext().getContext(); assertTrue(AtomicAllocator.getInstance().getPointer(expFP32, context) instanceof FloatPointer); assertTrue(AtomicAllocator.getInstance().getPointer(restoredFP32, context) instanceof FloatPointer); assertEquals(DataBuffer.Type.FLOAT, expFP32.data().dataType()); assertEquals(DataBuffer.Type.FLOAT, restoredFP32.data().dataType()); assertEquals(expFP32, restoredFP32); DataTypeUtil.setDTypeForContext(DataBuffer.Type.HALF); }
Example 20
Source File: CompressionSerDeTests.java From nd4j with Apache License 2.0 | 3 votes |
@Test public void testAutoDecompression1() throws Exception { INDArray array = Nd4j.linspace(1, 250, 250); INDArray compressed = Nd4j.getCompressor().compress(array, "UINT8"); ByteArrayOutputStream bos = new ByteArrayOutputStream(); Nd4j.write(bos, compressed); ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray()); INDArray result = Nd4j.read(bis); assertEquals(array, result); }