cc.mallet.classify.Classification Java Examples

The following examples show how to use cc.mallet.classify.Classification. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: EngineMBMalletClass.java    From gateplugin-LearningFramework with GNU Lesser General Public License v2.1 5 votes vote down vote up
@Override
public List<ModelApplication> applyModel(
        AnnotationSet instanceAS, AnnotationSet inputAS, AnnotationSet sequenceAS, String parms) {
  // NOTE: the crm should be of type CorpusRepresentationMalletClass for this to work!
  if(!(corpusRepresentation instanceof CorpusRepresentationMalletTarget)) {
    throw new GateRuntimeException("Cannot perform classification with data from "+corpusRepresentation.getClass());
  }
  CorpusRepresentationMalletTarget data = (CorpusRepresentationMalletTarget)corpusRepresentation;
  data.stopGrowth();
  List<ModelApplication> gcs = new ArrayList<>();
  LFPipe pipe = (LFPipe)data.getRepresentationMallet().getPipe();
  Classifier classifier = (Classifier)model;
  // iterate over the instance annotations and create mallet instances 
  for(Annotation instAnn : instanceAS.inDocumentOrder()) {
    Instance inst = data.extractIndependentFeatures(instAnn, inputAS);
    inst = pipe.instanceFrom(inst);
    Classification classification = classifier.classify(inst);
    Labeling labeling = classification.getLabeling();
    LabelVector labelvec = labeling.toLabelVector();
    List<String> classes = new ArrayList<>(labelvec.numLocations());
    List<Double> confidences = new ArrayList<>(labelvec.numLocations());
    for(int i=0; i<labelvec.numLocations(); i++) {
      classes.add(labelvec.getLabelAtRank(i).toString());
      confidences.add(labelvec.getValueAtRank(i));
    }      
    ModelApplication gc = new ModelApplication(instAnn, labeling.getBestLabel().toString(), 
            labeling.getBestValue(), classes, confidences);
    //System.err.println("ADDING GC "+gc);
    // now save the class in our special class feature on the instance as well
    instAnn.getFeatures().put("gate.LF.target",labeling.getBestLabel().toString());
    gcs.add(gc);
  }
  data.startGrowth();
  return gcs;
}
 
Example #2
Source File: MalletClassifier.java    From baleen with Apache License 2.0 5 votes vote down vote up
@Override
protected void doProcess(JCas jCas) throws AnalysisEngineProcessException {

  InstanceList instances = new InstanceList(classifierModel.getInstancePipe());
  instances.addThruPipe(new Instance(jCas.getDocumentText(), "", "from jcas", null));

  Classification classify = classifierModel.classify(instances.get(0));

  Metadata md = new Metadata(jCas);
  md.setKey(metadataKey);
  md.setValue(classify.getLabeling().getBestLabel().toString());
  addToJCasIndex(md);
}
 
Example #3
Source File: MaxEntClassifierTrainer.java    From baleen with Apache License 2.0 5 votes vote down vote up
private void writeClassificationToMongo(List<Classification> classify) {
  classify.forEach(
      classification -> {
        Instance instance = classification.getInstance();
        documentsCollection.findOneAndUpdate(
            Filters.eq(new ObjectId((String) instance.getName())),
            Updates.set(
                CLASSIFICATION_FIELD, classification.getLabeling().getBestLabel().toString()));
      });
}
 
Example #4
Source File: MaxEntClassifierTrainer.java    From baleen with Apache License 2.0 4 votes vote down vote up
@Override
protected void execute(JobSettings settings) throws AnalysisEngineProcessException {

  Pipe pipe = new MaxEntClassifierPipe(labelsAndFeatures.keySet(), stopwords);

  InstanceList instances = new InstanceList(pipe);
  instances.addThruPipe(getDocumentsFromMongoWithRandonLabelAssignement());

  Alphabet targetAlphabet = instances.getTargetAlphabet();
  HashMap<Integer, ArrayList<Integer>> featuresAndLabels =
      mapFeaturesToLabels(instances.getDataAlphabet(), targetAlphabet);

  int numLabels = targetAlphabet.size();
  HashMap<Integer, double[]> constraintsMap =
      FeatureConstraintUtil.setTargetsUsingHeuristic(featuresAndLabels, numLabels, 0.9);

  MaxEntKLFLGEConstraints geConstraints =
      new MaxEntKLFLGEConstraints(instances.getDataAlphabet().size(), numLabels, false);
  constraintsMap
      .entrySet()
      .forEach(e -> geConstraints.addConstraint(e.getKey(), e.getValue(), 1));
  ArrayList<MaxEntGEConstraint> constraints = new ArrayList<>();
  constraints.add(geConstraints);

  // Create a classifier trainer, and use it to create a classifier
  MaxEntGETrainer trainer = new MaxEntGETrainer(constraints);
  trainer.setMaxIterations(numIterations);
  trainer.setGaussianPriorVariance(variance);

  instances.forEach(
      i -> {
        i.unLock();
        i.setTarget(null);
        i.lock();
      });

  Classifier classifier = trainer.train(instances);

  List<Classification> classify = classifier.classify(instances);

  writeClassificationToMongo(classify);
  new ObjectFile(classifier, modelFile).write();
}
 
Example #5
Source File: ReferencesClassifierAnnotator.java    From bluima with Apache License 2.0 4 votes vote down vote up
public String classify(String txt) {
    Classification classification = classifier.classify(pipes
            .instanceFrom(new Instance(txt, null, null, null)));
    return classification.getLabeling().getBestLabel().toString();
}
 
Example #6
Source File: ReferencesClassifierTrainer.java    From bluima with Apache License 2.0 4 votes vote down vote up
public static void main(String[] args) {

        // pipe instances
        InstanceList instanceList = new InstanceList(
                new SerialPipes(getPipes()));
        FileIterator iterator = new FileIterator(new File[] { CORPUS },
                new TxtFilter(), LAST_DIRECTORY);
        instanceList.addThruPipe(iterator);

        // ////////////////////////////////////////////////////////////////
        // cross-validate
        System.out.println("trial\tprec\trecall\tF-score");
        double f1s = 0;
        for (int i = 0; i < trials; i++) {
            Trial trial = testTrainSplit(instanceList);
            System.out.println(join(new Object[] {//
                    i, trial.getPrecision(TESTING), trial.getRecall(TESTING),
                            trial.getF1(TESTING) }, "\t"));
            f1s += trial.getF1(TESTING);
        }
        System.out.println("mean F1 = " + (f1s / (trials + 0d)));

        // ////////////////////////////////////////////////////////////////
        // train
        ClassifierTrainer trainer = new MaxEntTrainer();
        Classifier c = trainer.train(instanceList);

        String txt = "in the entorhinal cortex of the rat\n"
                + "II: phase relations between unit discharges and theta field potentials.\n"
                + "J. Comp. Neurol. 67, 502–509.\n"
                + "Alonso, A., and Klink, R. (1993).\n"
                + "Differential electroresponsiveness of\n"
                + "stellate and pyramidal-like cells of\n"
                + "medial entorhinal cortex layer II.\n"
                + "J. Neurophysiol. 70, 128–143.\n"
                + "Alonso, A., and Köhler, C. (1984).\n"
                + "A study of the reciprocal connections between the septum and the\n"
                + "entorhinal area using anterograde\n"
                + "and retrograde axonal transport\n"
                + "methods in the rat brain. J. Comp.\n"
                + "Neurol. 225, 327–343.\n"
                + "Alonso, A., and Llinás, R. (1989).\n"
                + "Subthreshold sodium-dependent\n"
                + "theta-like rhythmicity in stellate\n"
                + "cells of entorhinal cortex layer II.\n"
                + "Nature 342, 175–177.\n"
                + "Amaral, D. G., and Kurz, J. (1985).\n"
                + "An analysis of the origins of\n" + "";
        Classification classification = c.classify(c.getInstancePipe()
                .instanceFrom(new Instance(txt, null, null, null)));
        System.out.println("LABELL " + classification.getLabeling());
        c.print();

        try {
            ObjectOutputStream oos = new ObjectOutputStream(
                    new FileOutputStream("target/classifier_"
                            + currentTimeMillis() + ".model"));
            oos.writeObject(c);
            oos.close();
        } catch (Exception e) {
            e.fillInStackTrace();
        }

        // //////////////////////////////////////////////////////////////////
        // train test
        for (String goldLabel : new String[] { "I", "O" }) {
            ClassifierTrainer trainer2 = new MaxEntTrainer();
            Classifier c2 = trainer2.train(instanceList);

            FileIterator iteratorI = new FileIterator(new File[] { new File(
                    CORPUS, "../annots1/" + goldLabel + "/") },
                    new TxtFilter(), LAST_DIRECTORY);
            Iterator<Instance> instancesI = c2.getInstancePipe()
                    .newIteratorFrom(iteratorI);

            Histogram<String> h = new Histogram<String>();
            while (instancesI.hasNext()) {
                Instance inst = instancesI.next();
                Labeling labeling = c2.classify(inst).getLabeling();
                Label bestLabel = labeling.getBestLabel();
                h.add(bestLabel.toString());

                // if (!bestLabel.toString().equals(goldLabel)) {
                // LOG.debug(
                // "\n\n\nMISSCLASSIFIED as {} but gold:{} :: "
                // + inst.getSource(), bestLabel, goldLabel);
                // }
            }
            System.out.println("\nlabel " + goldLabel + "\n" + h);
        }
    }