cc.mallet.pipe.SerialPipes Java Examples
The following examples show how to use
cc.mallet.pipe.SerialPipes.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: BrainRegionAnnotator.java From bluima with Apache License 2.0 | 5 votes |
@Override public void initialize(UimaContext context) throws ResourceInitializationException { super.initialize(context); try { mode = Mode.valueOf(modeStr); LOG.debug("Running in {} mode", mode); if (mode.equals(infer)) { // load model for inference checkArgument(new File(modelFile).exists(), "required for inference: no modelFile at " + modelFile); ObjectInputStream s = new ObjectInputStream( new FileInputStream(modelFile)); inferenceCrf = (CRF) s.readObject(); s.close(); checkArgument(inferenceCrf != null); } else { // create empty instanceList, init pipes trainingInstanceList = new InstanceList(// new SerialPipes(BrainRegionPipes.getPipes())); if (mode.equals(train)) checkNotNull(modelFile, "missing model output file"); } } catch (Exception e) { throw new ResourceInitializationException(e); } }
Example #2
Source File: BrainRegionPipesTest.java From bluima with Apache License 2.0 | 5 votes |
private void pipe(String txt, List<String>... features) throws Exception { // it might not have all the aes, though... JCas jCas = getOpenNlpTokenizedTestCas(txt); InstanceList il = new InstanceList(// new SerialPipes(BrainRegionPipes.getPipes())); Instance instance = new Instance(jCas, null, 1, jCas); il.addThruPipe(instance); Instance pipedInstance = il.iterator().next(); FeatureVectorSequence data = (FeatureVectorSequence) pipedInstance .getData(); java.util.Iterator<List<String>> featuresIt = asList(features) .iterator(); Iterator it = data.iterator(); while (it.hasNext()) { FeatureVector featureVector = it.next(); if (featuresIt.hasNext()) { for (String expectedFeature : featuresIt.next()) { assertTrue("could not find expected feature '" + expectedFeature + "', FeatureVector = \n" + featureVector, featureVector.contains(expectedFeature)); } } } }
Example #3
Source File: LDA.java From topic-detection with Apache License 2.0 | 5 votes |
/** * Creates a list of Malelt instances from a list of documents * @param texts a list of documents * @return a list of Mallet instances * @throws IOException */ private InstanceList createInstanceList(List<String> texts) throws IOException { ArrayList<Pipe> pipes = new ArrayList<Pipe>(); pipes.add(new CharSequence2TokenSequence()); pipes.add(new TokenSequenceLowercase()); pipes.add(new TokenSequenceRemoveStopwords()); pipes.add(new TokenSequence2FeatureSequence()); InstanceList instanceList = new InstanceList(new SerialPipes(pipes)); instanceList.addThruPipe(new ArrayIterator(texts)); return instanceList; }
Example #4
Source File: ReferencesClassifierTrainer.java From bluima with Apache License 2.0 | 4 votes |
public static void main(String[] args) { // pipe instances InstanceList instanceList = new InstanceList( new SerialPipes(getPipes())); FileIterator iterator = new FileIterator(new File[] { CORPUS }, new TxtFilter(), LAST_DIRECTORY); instanceList.addThruPipe(iterator); // //////////////////////////////////////////////////////////////// // cross-validate System.out.println("trial\tprec\trecall\tF-score"); double f1s = 0; for (int i = 0; i < trials; i++) { Trial trial = testTrainSplit(instanceList); System.out.println(join(new Object[] {// i, trial.getPrecision(TESTING), trial.getRecall(TESTING), trial.getF1(TESTING) }, "\t")); f1s += trial.getF1(TESTING); } System.out.println("mean F1 = " + (f1s / (trials + 0d))); // //////////////////////////////////////////////////////////////// // train ClassifierTrainer trainer = new MaxEntTrainer(); Classifier c = trainer.train(instanceList); String txt = "in the entorhinal cortex of the rat\n" + "II: phase relations between unit discharges and theta field potentials.\n" + "J. Comp. Neurol. 67, 502–509.\n" + "Alonso, A., and Klink, R. (1993).\n" + "Differential electroresponsiveness of\n" + "stellate and pyramidal-like cells of\n" + "medial entorhinal cortex layer II.\n" + "J. Neurophysiol. 70, 128–143.\n" + "Alonso, A., and Köhler, C. (1984).\n" + "A study of the reciprocal connections between the septum and the\n" + "entorhinal area using anterograde\n" + "and retrograde axonal transport\n" + "methods in the rat brain. J. Comp.\n" + "Neurol. 225, 327–343.\n" + "Alonso, A., and Llinás, R. (1989).\n" + "Subthreshold sodium-dependent\n" + "theta-like rhythmicity in stellate\n" + "cells of entorhinal cortex layer II.\n" + "Nature 342, 175–177.\n" + "Amaral, D. G., and Kurz, J. (1985).\n" + "An analysis of the origins of\n" + ""; Classification classification = c.classify(c.getInstancePipe() .instanceFrom(new Instance(txt, null, null, null))); System.out.println("LABELL " + classification.getLabeling()); c.print(); try { ObjectOutputStream oos = new ObjectOutputStream( new FileOutputStream("target/classifier_" + currentTimeMillis() + ".model")); oos.writeObject(c); oos.close(); } catch (Exception e) { e.fillInStackTrace(); } // ////////////////////////////////////////////////////////////////// // train test for (String goldLabel : new String[] { "I", "O" }) { ClassifierTrainer trainer2 = new MaxEntTrainer(); Classifier c2 = trainer2.train(instanceList); FileIterator iteratorI = new FileIterator(new File[] { new File( CORPUS, "../annots1/" + goldLabel + "/") }, new TxtFilter(), LAST_DIRECTORY); Iterator<Instance> instancesI = c2.getInstancePipe() .newIteratorFrom(iteratorI); Histogram<String> h = new Histogram<String>(); while (instancesI.hasNext()) { Instance inst = instancesI.next(); Labeling labeling = c2.classify(inst).getLabeling(); Label bestLabel = labeling.getBestLabel(); h.add(bestLabel.toString()); // if (!bestLabel.toString().equals(goldLabel)) { // LOG.debug( // "\n\n\nMISSCLASSIFIED as {} but gold:{} :: " // + inst.getSource(), bestLabel, goldLabel); // } } System.out.println("\nlabel " + goldLabel + "\n" + h); } }