Java Code Examples for org.apache.commons.math3.random.JDKRandomGenerator#setSeed()
The following examples show how to use
org.apache.commons.math3.random.JDKRandomGenerator#setSeed() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MultivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testRosenbrock() { Rosenbrock rosenbrock = new Rosenbrock(); SimplexOptimizer underlying = new SimplexOptimizer(new SimpleValueChecker(-1, 1.0e-3)); NelderMeadSimplex simplex = new NelderMeadSimplex(new double[][] { { -1.2, 1.0 }, { 0.9, 1.2 } , { 3.5, -2.3 } }); underlying.setSimplex(simplex); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(2, new GaussianRandomGenerator(g)); MultivariateMultiStartOptimizer optimizer = new MultivariateMultiStartOptimizer(underlying, 10, generator); PointValuePair optimum = optimizer.optimize(1100, rosenbrock, GoalType.MINIMIZE, new double[] { -1.2, 1.0 }); Assert.assertEquals(rosenbrock.getCount(), optimizer.getEvaluations()); Assert.assertTrue(optimizer.getEvaluations() > 900); Assert.assertTrue(optimizer.getEvaluations() < 1200); Assert.assertTrue(optimum.getValue() < 8.0e-4); }
Example 2
Source File: UnivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testSinMin() { UnivariateFunction f = new Sin(); UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(44428400075l); UnivariateMultiStartOptimizer<UnivariateFunction> optimizer = new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 10, g); optimizer.optimize(300, f, GoalType.MINIMIZE, -100.0, 100.0); UnivariatePointValuePair[] optima = optimizer.getOptima(); for (int i = 1; i < optima.length; ++i) { double d = (optima[i].getPoint() - optima[i-1].getPoint()) / (2 * FastMath.PI); Assert.assertTrue(FastMath.abs(d - FastMath.rint(d)) < 1.0e-8); Assert.assertEquals(-1.0, f.value(optima[i].getPoint()), 1.0e-10); Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1.0e-10); } Assert.assertTrue(optimizer.getEvaluations() > 200); Assert.assertTrue(optimizer.getEvaluations() < 300); }
Example 3
Source File: UnivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testBadFunction() { UnivariateFunction f = new UnivariateFunction() { public double value(double x) { if (x < 0) { throw new LocalException(); } return 0; } }; UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(4312000053L); UnivariateMultiStartOptimizer<UnivariateFunction> optimizer = new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 5, g); try { optimizer.optimize(300, f, GoalType.MINIMIZE, -0.3, -0.2); Assert.fail(); } catch (LocalException e) { // Expected. } // Ensure that the exception was thrown because no optimum was found. Assert.assertTrue(optimizer.getOptima()[0] == null); }
Example 4
Source File: UnivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testBadFunction() { UnivariateFunction f = new UnivariateFunction() { public double value(double x) { if (x < 0) { throw new LocalException(); } return 0; } }; UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(4312000053L); UnivariateMultiStartOptimizer<UnivariateFunction> optimizer = new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 5, g); try { optimizer.optimize(300, f, GoalType.MINIMIZE, -0.3, -0.2); Assert.fail(); } catch (LocalException e) { // Expected. } // Ensure that the exception was thrown because no optimum was found. Assert.assertTrue(optimizer.getOptima()[0] == null); }
Example 5
Source File: UnivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testBadFunction() { UnivariateFunction f = new UnivariateFunction() { public double value(double x) { if (x < 0) { throw new LocalException(); } return 0; } }; UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(4312000053L); UnivariateMultiStartOptimizer<UnivariateFunction> optimizer = new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 5, g); try { optimizer.optimize(300, f, GoalType.MINIMIZE, -0.3, -0.2); Assert.fail(); } catch (LocalException e) { // Expected. } // Ensure that the exception was thrown because no optimum was found. Assert.assertTrue(optimizer.getOptima()[0] == null); }
Example 6
Source File: UnivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testSinMin() { UnivariateFunction f = new SinFunction(); UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(44428400075l); UnivariateMultiStartOptimizer<UnivariateFunction> optimizer = new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 10, g); optimizer.optimize(300, f, GoalType.MINIMIZE, -100.0, 100.0); UnivariatePointValuePair[] optima = optimizer.getOptima(); for (int i = 1; i < optima.length; ++i) { double d = (optima[i].getPoint() - optima[i-1].getPoint()) / (2 * FastMath.PI); Assert.assertTrue(FastMath.abs(d - FastMath.rint(d)) < 1.0e-8); Assert.assertEquals(-1.0, f.value(optima[i].getPoint()), 1.0e-10); Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1.0e-10); } Assert.assertTrue(optimizer.getEvaluations() > 200); Assert.assertTrue(optimizer.getEvaluations() < 300); }
Example 7
Source File: MultiStartUnivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testQuinticMin() { // The quintic function has zeros at 0, +-0.5 and +-1. // The function has extrema (first derivative is zero) at 0.27195613 and 0.82221643, UnivariateFunction f = new QuinticFunction(); UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(4312000053L); MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 5, g); UnivariatePointValuePair optimum = optimizer.optimize(new MaxEval(300), new UnivariateObjectiveFunction(f), GoalType.MINIMIZE, new SearchInterval(-0.3, -0.2)); Assert.assertEquals(-0.27195613, optimum.getPoint(), 1e-9); Assert.assertEquals(-0.0443342695, optimum.getValue(), 1e-9); UnivariatePointValuePair[] optima = optimizer.getOptima(); for (int i = 0; i < optima.length; ++i) { Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1e-9); } Assert.assertTrue(optimizer.getEvaluations() >= 50); Assert.assertTrue(optimizer.getEvaluations() <= 100); }
Example 8
Source File: UnivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testBadFunction() { UnivariateFunction f = new UnivariateFunction() { public double value(double x) { if (x < 0) { throw new LocalException(); } return 0; } }; UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(4312000053L); UnivariateMultiStartOptimizer<UnivariateFunction> optimizer = new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 5, g); try { optimizer.optimize(300, f, GoalType.MINIMIZE, -0.3, -0.2); Assert.fail(); } catch (LocalException e) { // Expected. } // Ensure that the exception was thrown because no optimum was found. Assert.assertTrue(optimizer.getOptima()[0] == null); }
Example 9
Source File: UnivariateMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testSinMin() { UnivariateFunction f = new Sin(); UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(44428400075l); UnivariateMultiStartOptimizer<UnivariateFunction> optimizer = new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 10, g); optimizer.optimize(300, f, GoalType.MINIMIZE, -100.0, 100.0); UnivariatePointValuePair[] optima = optimizer.getOptima(); for (int i = 1; i < optima.length; ++i) { double d = (optima[i].getPoint() - optima[i-1].getPoint()) / (2 * FastMath.PI); Assert.assertTrue(FastMath.abs(d - FastMath.rint(d)) < 1.0e-8); Assert.assertEquals(-1.0, f.value(optima[i].getPoint()), 1.0e-10); Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1.0e-10); } Assert.assertTrue(optimizer.getEvaluations() > 200); Assert.assertTrue(optimizer.getEvaluations() < 300); }
Example 10
Source File: MultiStartMultivariateVectorOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Test demonstrating that the user exception is finally thrown if none * of the runs succeed. */ @Test(expected=TestException.class) public void testNoOptimum() { JacobianMultivariateVectorOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartMultivariateVectorOptimizer optimizer = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); optimizer.optimize(new MaxEval(100), new Target(new double[] { 0 }), new Weight(new double[] { 1 }), new InitialGuess(new double[] { 0 }), new ModelFunction(new MultivariateVectorFunction() { public double[] value(double[] point) { throw new TestException(); } })); }
Example 11
Source File: MultiStartMultivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRosenbrock() { Rosenbrock rosenbrock = new Rosenbrock(); SimplexOptimizer underlying = new SimplexOptimizer(new SimpleValueChecker(-1, 1e-3)); NelderMeadSimplex simplex = new NelderMeadSimplex(new double[][] { { -1.2, 1.0 }, { 0.9, 1.2 } , { 3.5, -2.3 } }); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(2, new GaussianRandomGenerator(g)); int nbStarts = 10; MultiStartMultivariateOptimizer optimizer = new MultiStartMultivariateOptimizer(underlying, nbStarts, generator); PointValuePair optimum = optimizer.optimize(new MaxEval(1100), new ObjectiveFunction(rosenbrock), GoalType.MINIMIZE, simplex, new InitialGuess(new double[] { -1.2, 1.0 })); Assert.assertEquals(nbStarts, optimizer.getOptima().length); Assert.assertEquals(rosenbrock.getCount(), optimizer.getEvaluations()); Assert.assertTrue(optimizer.getEvaluations() > 900); Assert.assertTrue(optimizer.getEvaluations() < 1200); Assert.assertTrue(optimum.getValue() < 5e-5); }
Example 12
Source File: MultiStartUnivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected=MathIllegalStateException.class) public void testMissingSearchInterval() { UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(44428400075l); MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g); optimizer.optimize(new MaxEval(300), new UnivariateObjectiveFunction(new Sin()), GoalType.MINIMIZE); }
Example 13
Source File: MultiStartUnivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected=MathIllegalStateException.class) public void testMissingMaxEval() { UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(44428400075l); MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g); optimizer.optimize(new UnivariateObjectiveFunction(new Sin()), GoalType.MINIMIZE, new SearchInterval(-1, 1)); }
Example 14
Source File: MultiStartMultivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRosenbrock() { Rosenbrock rosenbrock = new Rosenbrock(); SimplexOptimizer underlying = new SimplexOptimizer(new SimpleValueChecker(-1, 1e-3)); NelderMeadSimplex simplex = new NelderMeadSimplex(new double[][] { { -1.2, 1.0 }, { 0.9, 1.2 } , { 3.5, -2.3 } }); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(2, new GaussianRandomGenerator(g)); MultiStartMultivariateOptimizer optimizer = new MultiStartMultivariateOptimizer(underlying, 10, generator); PointValuePair optimum = optimizer.optimize(new MaxEval(1100), new ObjectiveFunction(rosenbrock), GoalType.MINIMIZE, simplex, new InitialGuess(new double[] { -1.2, 1.0 })); Assert.assertEquals(rosenbrock.getCount(), optimizer.getEvaluations()); Assert.assertTrue(optimizer.getEvaluations() > 900); Assert.assertTrue(optimizer.getEvaluations() < 1200); Assert.assertTrue(optimum.getValue() < 8e-4); }
Example 15
Source File: MultiStartUnivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected=MathIllegalStateException.class) public void testMissingMaxEval() { UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(44428400075l); MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g); optimizer.optimize(new UnivariateObjectiveFunction(new Sin()), GoalType.MINIMIZE, new SearchInterval(-1, 1)); }
Example 16
Source File: DifferentiableMultivariateVectorMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testTrivial() { LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); DifferentiableMultivariateVectorOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1.0e-6, 1.0e-6)); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); DifferentiableMultivariateVectorMultiStartOptimizer optimizer = new DifferentiableMultivariateVectorMultiStartOptimizer(underlyingOptimizer, 10, generator); // no optima before first optimization attempt try { optimizer.getOptima(); Assert.fail("an exception should have been thrown"); } catch (MathIllegalStateException ise) { // expected } PointVectorValuePair optimum = optimizer.optimize(100, problem, problem.target, new double[] { 1 }, new double[] { 0 }); Assert.assertEquals(1.5, optimum.getPoint()[0], 1.0e-10); Assert.assertEquals(3.0, optimum.getValue()[0], 1.0e-10); PointVectorValuePair[] optima = optimizer.getOptima(); Assert.assertEquals(10, optima.length); for (int i = 0; i < optima.length; ++i) { Assert.assertEquals(1.5, optima[i].getPoint()[0], 1.0e-10); Assert.assertEquals(3.0, optima[i].getValue()[0], 1.0e-10); } Assert.assertTrue(optimizer.getEvaluations() > 20); Assert.assertTrue(optimizer.getEvaluations() < 50); Assert.assertEquals(100, optimizer.getMaxEvaluations()); }
Example 17
Source File: MultiStartUnivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected=MathIllegalStateException.class) public void testMissingMaxEval() { UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(44428400075l); MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g); optimizer.optimize(new UnivariateObjectiveFunction(new Sin()), GoalType.MINIMIZE, new SearchInterval(-1, 1)); }
Example 18
Source File: MultiStartMultivariateVectorOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testIssue914() { LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); JacobianMultivariateVectorOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)) { @Override public PointVectorValuePair optimize(OptimizationData... optData) { // filter out simple bounds, as they are not supported // by the underlying optimizer, and we don't really care for this test OptimizationData[] filtered = optData.clone(); for (int i = 0; i < filtered.length; ++i) { if (filtered[i] instanceof SimpleBounds) { filtered[i] = null; } } return super.optimize(filtered); } }; JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartMultivariateVectorOptimizer optimizer = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); optimizer.optimize(new MaxEval(100), problem.getModelFunction(), problem.getModelFunctionJacobian(), problem.getTarget(), new Weight(new double[] { 1 }), new InitialGuess(new double[] { 0 }), new SimpleBounds(new double[] { -1.0e-10 }, new double[] { 1.0e-10 })); PointVectorValuePair[] optima = optimizer.getOptima(); // only the first start should have succeeded Assert.assertEquals(1, optima.length); }
Example 19
Source File: MultiStartMultivariateOptimizerTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testCircleFitting() { CircleScalar circle = new CircleScalar(); circle.addPoint( 30.0, 68.0); circle.addPoint( 50.0, -6.0); circle.addPoint(110.0, -20.0); circle.addPoint( 35.0, 15.0); circle.addPoint( 45.0, 97.0); // TODO: the wrapper around NonLinearConjugateGradientOptimizer is a temporary hack for // version 3.1 of the library. It should be removed when NonLinearConjugateGradientOptimizer // will officially be declared as implementing MultivariateDifferentiableOptimizer GradientMultivariateOptimizer underlying = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, new SimpleValueChecker(1e-10, 1e-10)); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(753289573253l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(new double[] { 50, 50 }, new double[] { 10, 10 }, new GaussianRandomGenerator(g)); int nbStarts = 10; MultiStartMultivariateOptimizer optimizer = new MultiStartMultivariateOptimizer(underlying, nbStarts, generator); PointValuePair optimum = optimizer.optimize(new MaxEval(1000), circle.getObjectiveFunction(), circle.getObjectiveFunctionGradient(), GoalType.MINIMIZE, new InitialGuess(new double[] { 98.680, 47.345 })); Assert.assertEquals(1000, optimizer.getMaxEvaluations()); PointValuePair[] optima = optimizer.getOptima(); Assert.assertEquals(nbStarts, optima.length); for (PointValuePair o : optima) { // we check the results of all intermediate restarts here (there are 10 such results) Vector2D center = new Vector2D(o.getPointRef()[0], o.getPointRef()[1]); Assert.assertTrue(69.9592 < circle.getRadius(center)); Assert.assertTrue(69.9602 > circle.getRadius(center)); Assert.assertTrue(96.0745 < center.getX()); Assert.assertTrue(96.0762 > center.getX()); Assert.assertTrue(48.1344 < center.getY()); Assert.assertTrue(48.1354 > center.getY()); } Assert.assertTrue(optimizer.getEvaluations() > 850); Assert.assertTrue(optimizer.getEvaluations() < 900); Assert.assertEquals(3.1267527, optimum.getValue(), 1e-8); }
Example 20
Source File: MultivariateDifferentiableMultiStartOptimizerTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testCircleFitting() { CircleScalar circle = new CircleScalar(); circle.addPoint( 30.0, 68.0); circle.addPoint( 50.0, -6.0); circle.addPoint(110.0, -20.0); circle.addPoint( 35.0, 15.0); circle.addPoint( 45.0, 97.0); // TODO: the wrapper around NonLinearConjugateGradientOptimizer is a temporary hack for // version 3.1 of the library. It should be removed when NonLinearConjugateGradientOptimizer // will officially be declared as implementing MultivariateDifferentiableOptimizer MultivariateDifferentiableOptimizer underlying = new MultivariateDifferentiableOptimizer() { private final NonLinearConjugateGradientOptimizer cg = new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE, new SimpleValueChecker(1.0e-10, 1.0e-10)); public PointValuePair optimize(int maxEval, MultivariateDifferentiableFunction f, GoalType goalType, double[] startPoint) { return cg.optimize(maxEval, f, goalType, startPoint); } public int getMaxEvaluations() { return cg.getMaxEvaluations(); } public int getEvaluations() { return cg.getEvaluations(); } public ConvergenceChecker<PointValuePair> getConvergenceChecker() { return cg.getConvergenceChecker(); } }; JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(753289573253l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(new double[] { 50.0, 50.0 }, new double[] { 10.0, 10.0 }, new GaussianRandomGenerator(g)); MultivariateDifferentiableMultiStartOptimizer optimizer = new MultivariateDifferentiableMultiStartOptimizer(underlying, 10, generator); PointValuePair optimum = optimizer.optimize(200, circle, GoalType.MINIMIZE, new double[] { 98.680, 47.345 }); Assert.assertEquals(200, optimizer.getMaxEvaluations()); PointValuePair[] optima = optimizer.getOptima(); for (PointValuePair o : optima) { Vector2D center = new Vector2D(o.getPointRef()[0], o.getPointRef()[1]); Assert.assertEquals(69.960161753, circle.getRadius(center), 1.0e-8); Assert.assertEquals(96.075902096, center.getX(), 1.0e-8); Assert.assertEquals(48.135167894, center.getY(), 1.0e-8); } Assert.assertTrue(optimizer.getEvaluations() > 70); Assert.assertTrue(optimizer.getEvaluations() < 90); Assert.assertEquals(3.1267527, optimum.getValue(), 1.0e-8); }