Java Code Examples for org.apache.commons.math3.util.Precision#SAFE_MIN
The following examples show how to use
org.apache.commons.math3.util.Precision#SAFE_MIN .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: EigenDecompositionTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** test eigenvalues for a big matrix. */ @Test public void testBigMatrix() { Random r = new Random(17748333525117l); double[] bigValues = new double[200]; for (int i = 0; i < bigValues.length; ++i) { bigValues[i] = 2 * r.nextDouble() - 1; } Arrays.sort(bigValues); EigenDecomposition ed; ed = new EigenDecomposition(createTestMatrix(r, bigValues), Precision.SAFE_MIN); double[] eigenValues = ed.getRealEigenvalues(); Assert.assertEquals(bigValues.length, eigenValues.length); for (int i = 0; i < bigValues.length; ++i) { Assert.assertEquals(bigValues[bigValues.length - i - 1], eigenValues[i], 2.0e-14); } }
Example 2
Source File: IntervalsSet.java From astor with GNU General Public License v2.0 | 6 votes |
/** {@inheritDoc} */ @Override protected void computeGeometricalProperties() { if (getTree(false).getCut() == null) { setBarycenter(Vector1D.NaN); setSize(((Boolean) getTree(false).getAttribute()) ? Double.POSITIVE_INFINITY : 0); } else { double size = 0.0; double sum = 0.0; for (final Interval interval : asList()) { size += interval.getSize(); sum += interval.getSize() * interval.getBarycenter(); } setSize(size); if (Double.isInfinite(size)) { setBarycenter(Vector1D.NaN); } else if (size >= Precision.SAFE_MIN) { setBarycenter(new Vector1D(sum / size)); } else { setBarycenter(((OrientedPoint) getTree(false).getCut().getHyperplane()).getLocation()); } } }
Example 3
Source File: SmoothingPolynomialBicubicSplineInterpolator.java From astor with GNU General Public License v2.0 | 6 votes |
/** * @param xDegree Degree of the polynomial fitting functions along the * x-dimension. * @param yDegree Degree of the polynomial fitting functions along the * y-dimension. * @exception NotPositiveException if degrees are not positive */ public SmoothingPolynomialBicubicSplineInterpolator(int xDegree, int yDegree) throws NotPositiveException { if (xDegree < 0) { throw new NotPositiveException(xDegree); } if (yDegree < 0) { throw new NotPositiveException(yDegree); } this.xDegree = xDegree; this.yDegree = yDegree; final double safeFactor = 1e2; final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(safeFactor * Precision.EPSILON, safeFactor * Precision.SAFE_MIN); xFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker)); yFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker)); }
Example 4
Source File: NPEfix_00175_t.java From coming with MIT License | 6 votes |
/** Compute the shortest distance between the instance and another line. * @param line line to check against the instance * @return shortest distance between the instance and the line */ public double distance(final Line line) { final Vector3D normal = Vector3D.crossProduct(direction, line.direction); final double n = normal.getNorm(); if (n < Precision.SAFE_MIN) { // lines are parallel return distance(line.zero); } // signed separation of the two parallel planes that contains the lines final double offset = line.zero.subtract(zero).dotProduct(normal) / n; return FastMath.abs(offset); }
Example 5
Source File: Line.java From astor with GNU General Public License v2.0 | 6 votes |
/** Compute the shortest distance between the instance and another line. * @param line line to check against the instance * @return shortest distance between the instance and the line */ public double distance(final Line line) { final Vector3D normal = Vector3D.crossProduct(direction, line.direction); final double n = normal.getNorm(); if (n < Precision.SAFE_MIN) { // lines are parallel return distance(line.zero); } // signed separation of the two parallel planes that contains the lines final double offset = line.zero.subtract(zero).dotProduct(normal) / n; return FastMath.abs(offset); }
Example 6
Source File: NPEfix_00177_t.java From coming with MIT License | 6 votes |
/** Compute the shortest distance between the instance and another line. * @param line line to check against the instance * @return shortest distance between the instance and the line */ public double distance(final Line line) { final Vector3D normal = Vector3D.crossProduct(direction, line.direction); final double n = normal.getNorm(); if (n < Precision.SAFE_MIN) { // lines are parallel return distance(line.zero); } // signed separation of the two parallel planes that contains the lines final double offset = line.zero.subtract(zero).dotProduct(normal) / n; return FastMath.abs(offset); }
Example 7
Source File: MatrixUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** Solver a system composed of an Upper Triangular Matrix * {@link RealMatrix}. * <p> * This method is called to solve systems of equations which are * of the lower triangular form. The matrix {@link RealMatrix} * is assumed, though not checked, to be in upper triangular form. * The vector {@link RealVector} is overwritten with the solution. * The matrix is checked that it is square and its dimensions match * the length of the vector. * </p> * @param rm RealMatrix which is upper triangular * @param b RealVector this is overwritten * @throws DimensionMismatchException if the matrix and vector are not * conformable * @throws NonSquareMatrixException if the matrix {@code rm} is not * square * @throws MathArithmeticException if the absolute value of one of the diagonal * coefficient of {@code rm} is lower than {@link Precision#SAFE_MIN} */ public static void solveUpperTriangularSystem(RealMatrix rm, RealVector b) throws DimensionMismatchException, MathArithmeticException, NonSquareMatrixException { if ((rm == null) || (b == null) || ( rm.getRowDimension() != b.getDimension())) { throw new DimensionMismatchException( (rm == null) ? 0 : rm.getRowDimension(), (b == null) ? 0 : b.getDimension()); } if( rm.getColumnDimension() != rm.getRowDimension() ){ throw new NonSquareMatrixException(rm.getRowDimension(), rm.getColumnDimension()); } int rows = rm.getRowDimension(); for( int i = rows-1 ; i >-1 ; i-- ){ double diag = rm.getEntry(i, i); if( FastMath.abs(diag) < Precision.SAFE_MIN ){ throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR); } double bi = b.getEntry(i)/diag; b.setEntry(i, bi ); for( int j = i-1; j>-1; j-- ){ b.setEntry(j, b.getEntry(j)-bi*rm.getEntry(j,i) ); } } }
Example 8
Source File: MatrixUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/**Solve a system of composed of a Lower Triangular Matrix * {@link RealMatrix}. * <p> * This method is called to solve systems of equations which are * of the lower triangular form. The matrix {@link RealMatrix} * is assumed, though not checked, to be in lower triangular form. * The vector {@link RealVector} is overwritten with the solution. * The matrix is checked that it is square and its dimensions match * the length of the vector. * </p> * @param rm RealMatrix which is lower triangular * @param b RealVector this is overwritten * @exception IllegalArgumentException if the matrix and vector are not conformable * @exception ArithmeticException there is a zero or near zero on the diagonal of rm */ public static void solveLowerTriangularSystem( RealMatrix rm, RealVector b){ if ((rm == null) || (b == null) || ( rm.getRowDimension() != b.getDimension())) { throw new MathIllegalArgumentException(LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, (rm == null) ? 0 : rm.getRowDimension(), (b == null) ? 0 : b.getDimension()); } if( rm.getColumnDimension() != rm.getRowDimension() ){ throw new MathIllegalArgumentException(LocalizedFormats.DIMENSIONS_MISMATCH_2x2, rm.getRowDimension(),rm.getRowDimension(), rm.getRowDimension(),rm.getColumnDimension()); } int rows = rm.getRowDimension(); for( int i = 0 ; i < rows ; i++ ){ double diag = rm.getEntry(i, i); if( FastMath.abs(diag) < Precision.SAFE_MIN ){ throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR); } double bi = b.getEntry(i)/diag; b.setEntry(i, bi ); for( int j = i+1; j< rows; j++ ){ b.setEntry(j, b.getEntry(j)-bi*rm.getEntry(j,i) ); } } }
Example 9
Source File: NPEfix_00190_t.java From coming with MIT License | 6 votes |
/** Compute the shortest distance between the instance and another line. * @param line line to check against the instance * @return shortest distance between the instance and the line */ public double distance(final Line line) { final Vector3D normal = Vector3D.crossProduct(direction, line.direction); final double n = normal.getNorm(); if (n < Precision.SAFE_MIN) { // lines are parallel return distance(line.zero); } // signed separation of the two parallel planes that contains the lines final double offset = line.zero.subtract(zero).dotProduct(normal) / n; return FastMath.abs(offset); }
Example 10
Source File: NPEfix_00189_t.java From coming with MIT License | 6 votes |
/** Compute the shortest distance between the instance and another line. * @param line line to check against the instance * @return shortest distance between the instance and the line */ public double distance(final Line line) { final Vector3D normal = Vector3D.crossProduct(direction, line.direction); final double n = normal.getNorm(); if (n < Precision.SAFE_MIN) { // lines are parallel return distance(line.zero); } // signed separation of the two parallel planes that contains the lines final double offset = line.zero.subtract(zero).dotProduct(normal) / n; return FastMath.abs(offset); }
Example 11
Source File: NPEfix_00191_s.java From coming with MIT License | 6 votes |
/** Compute the shortest distance between the instance and another line. * @param line line to check against the instance * @return shortest distance between the instance and the line */ public double distance(final Line line) { final Vector3D normal = Vector3D.crossProduct(direction, line.direction); final double n = normal.getNorm(); if (n < Precision.SAFE_MIN) { // lines are parallel return distance(line.zero); } // signed separation of the two parallel planes that contains the lines final double offset = line.zero.subtract(zero).dotProduct(normal) / n; return FastMath.abs(offset); }
Example 12
Source File: Quaternion.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the normalized quaternion (the versor of the instance). * The norm of the quaternion must not be zero. * * @return a normalized quaternion. * @throws ZeroException if the norm of the quaternion is zero. */ public Quaternion normalize() { final double norm = getNorm(); if (norm < Precision.SAFE_MIN) { throw new ZeroException(LocalizedFormats.NORM, norm); } return new Quaternion(q0 / norm, q1 / norm, q2 / norm, q3 / norm); }
Example 13
Source File: EigenDecompositionTest.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Matrix with eigenvalues {8, -1, -1} */ @Test public void testRepeatedEigenvalue() { RealMatrix repeated = MatrixUtils.createRealMatrix(new double[][] { {3, 2, 4}, {2, 0, 2}, {4, 2, 3} }); EigenDecomposition ed; ed = new EigenDecomposition(repeated, Precision.SAFE_MIN); checkEigenValues((new double[] {8, -1, -1}), ed, 1E-12); checkEigenVector((new double[] {2, 1, 2}), ed, 1E-12); }
Example 14
Source File: EigenDecompositionTest.java From astor with GNU General Public License v2.0 | 5 votes |
/** test diagonal matrix */ @Test public void testDiagonal() { double[] diagonal = new double[] { -3.0, -2.0, 2.0, 5.0 }; RealMatrix m = createDiagonalMatrix(diagonal, diagonal.length, diagonal.length); EigenDecomposition ed; ed = new EigenDecomposition(m, Precision.SAFE_MIN); Assert.assertEquals(diagonal[0], ed.getRealEigenvalue(3), 2.0e-15); Assert.assertEquals(diagonal[1], ed.getRealEigenvalue(2), 2.0e-15); Assert.assertEquals(diagonal[2], ed.getRealEigenvalue(1), 2.0e-15); Assert.assertEquals(diagonal[3], ed.getRealEigenvalue(0), 2.0e-15); }
Example 15
Source File: Quaternion.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Returns the inverse of this instance. * The norm of the quaternion must not be zero. * * @return the inverse. * @throws ZeroException if the norm (squared) of the quaternion is zero. */ public Quaternion getInverse() { final double squareNorm = q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3; if (squareNorm < Precision.SAFE_MIN) { throw new ZeroException(LocalizedFormats.NORM, squareNorm); } return new Quaternion(q0 / squareNorm, -q1 / squareNorm, -q2 / squareNorm, -q3 / squareNorm); }
Example 16
Source File: LevenbergMarquardtOptimizer.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Build an optimizer for least squares problems with default values * for some of the tuning parameters (see the {@link * #LevenbergMarquardtOptimizer(double,double,double,double,double) * other contructor}. * The default values for the algorithm settings are: * <ul> * <li>Initial step bound factor}: 100</li> * <li>QR ranking threshold}: {@link Precision#SAFE_MIN}</li> * </ul> * * @param costRelativeTolerance Desired relative error in the sum of * squares. * @param parRelativeTolerance Desired relative error in the approximate * solution parameters. * @param orthoTolerance Desired max cosine on the orthogonality between * the function vector and the columns of the Jacobian. */ public LevenbergMarquardtOptimizer(double costRelativeTolerance, double parRelativeTolerance, double orthoTolerance) { this(100, costRelativeTolerance, parRelativeTolerance, orthoTolerance, Precision.SAFE_MIN); }
Example 17
Source File: LevenbergMarquardtOptimizer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Constructor that allows the specification of a custom convergence * checker. * Note that all the usual convergence checks will be <em>disabled</em>. * The default values for the algorithm settings are: * <ul> * <li>Initial step bound factor: 100</li> * <li>Cost relative tolerance: 1e-10</li> * <li>Parameters relative tolerance: 1e-10</li> * <li>Orthogonality tolerance: 1e-10</li> * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li> * </ul> * * @param checker Convergence checker. */ public LevenbergMarquardtOptimizer(ConvergenceChecker<PointVectorValuePair> checker) { this(100, checker, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN); }
Example 18
Source File: Math_6_LevenbergMarquardtOptimizer_s.java From coming with MIT License | 2 votes |
/** * Constructor that allows the specification of a custom convergence * checker. * Note that all the usual convergence checks will be <em>disabled</em>. * The default values for the algorithm settings are: * <ul> * <li>Initial step bound factor: 100</li> * <li>Cost relative tolerance: 1e-10</li> * <li>Parameters relative tolerance: 1e-10</li> * <li>Orthogonality tolerance: 1e-10</li> * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li> * </ul> * * @param checker Convergence checker. */ public LevenbergMarquardtOptimizer(ConvergenceChecker<PointVectorValuePair> checker) { this(100, checker, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN); }
Example 19
Source File: LevenbergMarquardtOptimizer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Constructor that allows the specification of a custom convergence * checker. * Note that all the usual convergence checks will be <em>disabled</em>. * The default values for the algorithm settings are: * <ul> * <li>Initial step bound factor: 100</li> * <li>Cost relative tolerance: 1e-10</li> * <li>Parameters relative tolerance: 1e-10</li> * <li>Orthogonality tolerance: 1e-10</li> * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li> * </ul> * * @param checker Convergence checker. */ public LevenbergMarquardtOptimizer(ConvergenceChecker<PointVectorValuePair> checker) { this(100, checker, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN); }
Example 20
Source File: LevenbergMarquardtOptimizer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Build an optimizer for least squares problems with default values * for all the tuning parameters (see the {@link * #LevenbergMarquardtOptimizer(double,double,double,double,double) * other contructor}. * The default values for the algorithm settings are: * <ul> * <li>Initial step bound factor: 100</li> * <li>Cost relative tolerance: 1e-10</li> * <li>Parameters relative tolerance: 1e-10</li> * <li>Orthogonality tolerance: 1e-10</li> * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li> * </ul> */ public LevenbergMarquardtOptimizer() { this(100, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN); }