Java Code Examples for org.dmg.pmml.tree.Node#setScore()

The following examples show how to use org.dmg.pmml.tree.Node#setScore() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: RangerConverter.java    From jpmml-r with GNU Affero General Public License v3.0 6 votes vote down vote up
private MiningModel encodeRegression(RGenericVector ranger, Schema schema){
	RGenericVector forest = ranger.getGenericElement("forest");

	ScoreEncoder scoreEncoder = new ScoreEncoder(){

		@Override
		public Node encode(Node node, Number splitValue, RNumberVector<?> terminalClassCount){
			node.setScore(splitValue);

			return node;
		}
	};

	List<TreeModel> treeModels = encodeForest(forest, MiningFunction.REGRESSION, scoreEncoder, schema);

	MiningModel miningModel = new MiningModel(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(schema.getLabel()))
		.setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.AVERAGE, treeModels));

	return miningModel;
}
 
Example 2
Source File: TargetCategoryParser.java    From jpmml-evaluator with GNU Affero General Public License v3.0 6 votes vote down vote up
@Override
public VisitorAction visit(Node node){
	PMMLObject parent = getParent();

	if(parent instanceof TreeModel){
		TreeModel treeModel = (TreeModel)parent;

		MiningFunction miningFunction = treeModel.getMiningFunction();
		switch(miningFunction){
			case CLASSIFICATION:
				break;
			default:
				return VisitorAction.SKIP;
		}
	}

	node.setScore(parseTargetValue(node.getScore()));

	return super.visit(node);
}
 
Example 3
Source File: TreeModelCompactor.java    From jpmml-sklearn with GNU Affero General Public License v3.0 5 votes vote down vote up
@Override
public void exitNode(Node node){
	Predicate predicate = node.getPredicate();

	if(predicate instanceof True){
		Node parentNode = getParentNode();

		if(parentNode == null){
			return;
		}

		if((MiningFunction.REGRESSION).equals(this.miningFunction)){
			parentNode.setScore(null);

			initScore(parentNode, node);
			replaceChildWithGrandchildren(parentNode, node);
		} else

		if((MiningFunction.CLASSIFICATION).equals(this.miningFunction)){

			// Replace intermediate nodes, but not terminal nodes
			if(node.hasNodes()){
				replaceChildWithGrandchildren(parentNode, node);
			}
		} else

		{
			throw new IllegalArgumentException();
		}
	}
}
 
Example 4
Source File: TreeModelFlattener.java    From jpmml-sklearn with GNU Affero General Public License v3.0 5 votes vote down vote up
@Override
public void exitNode(Node node){
	Predicate predicate = node.getPredicate();

	if(predicate instanceof True){
		Node parentNode = getParentNode();

		if(parentNode == null){
			return;
		}

		List<Node> parentChildren = parentNode.getNodes();
		if(parentChildren.size() != 1){
			return;
		}

		boolean success = parentChildren.remove(node);
		if(!success){
			throw new IllegalArgumentException();
		} // End if

		if((MiningFunction.REGRESSION).equals(this.miningFunction)){
			parentNode.setScore(null);

			initScore(parentNode, node);
		} else

		if((MiningFunction.CLASSIFICATION).equals(this.miningFunction)){
			initScoreDistribution(parentNode, node);
		} else

		{
			throw new IllegalArgumentException();
		}
	}
}
 
Example 5
Source File: NodeScoreParser.java    From jpmml-evaluator with GNU Affero General Public License v3.0 5 votes vote down vote up
@Override
public VisitorAction visit(Node node){

	if(node.hasScore()){
		Object score = node.getScore();

		if(score instanceof String){
			score = parseScore(score);

			node.setScore(score);
		}
	}

	return super.visit(node);
}
 
Example 6
Source File: RDFUpdate.java    From oryx with Apache License 2.0 4 votes vote down vote up
private TreeModel toTreeModel(DecisionTreeModel dtModel,
                              CategoricalValueEncodings categoricalValueEncodings,
                              IntLongMap nodeIDCounts) {

  boolean classificationTask = dtModel.algo().equals(Algo.Classification());
  Preconditions.checkState(classificationTask == inputSchema.isClassification());

  Node root = new ComplexNode();
  root.setId("r");

  Queue<Node> modelNodes = new ArrayDeque<>();
  modelNodes.add(root);

  Queue<Pair<org.apache.spark.mllib.tree.model.Node,Split>> treeNodes = new ArrayDeque<>();
  treeNodes.add(new Pair<>(dtModel.topNode(), null));

  while (!treeNodes.isEmpty()) {

    Pair<org.apache.spark.mllib.tree.model.Node,Split> treeNodePredicate = treeNodes.remove();
    Node modelNode = modelNodes.remove();

    // This is the decision that got us here from the parent, if any;
    // not the predicate at this node
    Predicate predicate = buildPredicate(treeNodePredicate.getSecond(),
                                         categoricalValueEncodings);
    modelNode.setPredicate(predicate);

    org.apache.spark.mllib.tree.model.Node treeNode = treeNodePredicate.getFirst();
    long nodeCount = nodeIDCounts.get(treeNode.id());
    modelNode.setRecordCount((double) nodeCount);

    if (treeNode.isLeaf()) {

      Predict prediction = treeNode.predict();
      int targetEncodedValue = (int) prediction.predict();
      if (classificationTask) {
        Map<Integer,String> targetEncodingToValue =
            categoricalValueEncodings.getEncodingValueMap(inputSchema.getTargetFeatureIndex());
        double predictedProbability = prediction.prob();
        Preconditions.checkState(predictedProbability >= 0.0 && predictedProbability <= 1.0);
        // Not sure how nodeCount == 0 can happen but it does in the MLlib model
        long effectiveNodeCount = Math.max(1, nodeCount);
        // Problem: MLlib only gives a predicted class and its probability, and no distribution
        // over the rest. Infer that the rest of the probability is evenly distributed.
        double restProbability = (1.0 - predictedProbability) / (targetEncodingToValue.size() - 1);

        targetEncodingToValue.forEach((encodedValue, value) -> {
          double probability = encodedValue == targetEncodedValue ? predictedProbability : restProbability;
          // Yes, recordCount may be fractional; it's a relative indicator
          double recordCount = probability * effectiveNodeCount;
          if (recordCount > 0.0) {
            ScoreDistribution distribution = new ScoreDistribution(value, recordCount);
            // Not "confident" enough in the "probability" to call it one
            distribution.setConfidence(probability);
            modelNode.addScoreDistributions(distribution);
          }
        });
      } else {
        modelNode.setScore(Double.toString(targetEncodedValue));
      }

    } else {

      Split split = treeNode.split().get();

      Node positiveModelNode = new ComplexNode().setId(modelNode.getId() + "+");
      Node negativeModelNode = new ComplexNode().setId(modelNode.getId() + "-");
      modelNode.addNodes(positiveModelNode, negativeModelNode);

      org.apache.spark.mllib.tree.model.Node rightTreeNode = treeNode.rightNode().get();
      org.apache.spark.mllib.tree.model.Node leftTreeNode = treeNode.leftNode().get();

      boolean defaultRight = nodeIDCounts.get(rightTreeNode.id()) > nodeIDCounts.get(leftTreeNode.id());
      modelNode.setDefaultChild(defaultRight ? positiveModelNode.getId() : negativeModelNode.getId());

      // Right node is "positive", so carries the predicate. It must evaluate first
      // and therefore come first in the tree
      modelNodes.add(positiveModelNode);
      modelNodes.add(negativeModelNode);
      treeNodes.add(new Pair<>(rightTreeNode, split));
      treeNodes.add(new Pair<>(leftTreeNode, null));

    }

  }

  return new TreeModel()
      .setNode(root)
      .setSplitCharacteristic(TreeModel.SplitCharacteristic.BINARY_SPLIT)
      .setMissingValueStrategy(TreeModel.MissingValueStrategy.DEFAULT_CHILD);
}
 
Example 7
Source File: BinaryTreeConverter.java    From jpmml-r with GNU Affero General Public License v3.0 3 votes vote down vote up
static
private Node encodeRegressionScore(Node node, RDoubleVector probabilities){

	if(probabilities.size() != 1){
		throw new IllegalArgumentException();
	}

	Double probability = probabilities.asScalar();

	node.setScore(probability);

	return node;
}
 
Example 8
Source File: RangerConverter.java    From jpmml-r with GNU Affero General Public License v3.0 3 votes vote down vote up
private MiningModel encodeClassification(RGenericVector ranger, Schema schema){
	RGenericVector forest = ranger.getGenericElement("forest");

	RStringVector levels = forest.getStringElement("levels");

	ScoreEncoder scoreEncoder = new ScoreEncoder(){

		@Override
		public Node encode(Node node, Number splitValue, RNumberVector<?> terminalClassCount){
			int index = ValueUtil.asInt(splitValue);

			if(terminalClassCount != null){
				throw new IllegalArgumentException();
			}

			node.setScore(levels.getValue(index - 1));

			return node;
		}
	};

	List<TreeModel> treeModels = encodeForest(forest, MiningFunction.CLASSIFICATION, scoreEncoder, schema);

	MiningModel miningModel = new MiningModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(schema.getLabel()))
		.setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.MAJORITY_VOTE, treeModels));

	return miningModel;
}