Java Code Examples for org.opencv.core.MatOfPoint#toArray()
The following examples show how to use
org.opencv.core.MatOfPoint#toArray() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: PaintUtils.java From super-cloudops with Apache License 2.0 | 6 votes |
/** * * 画出所有的矩形 * * @param src * @return */ public static Mat paintCon(Mat src) { Mat cannyMat = GeneralUtils.canny(src); List<MatOfPoint> contours = ContoursUtils.findContours(cannyMat); Mat rectMat = src.clone(); Scalar scalar = new Scalar(0, 0, 255); for (int i = contours.size() - 1; i >= 0; i--) { MatOfPoint matOfPoint = contours.get(i); MatOfPoint2f matOfPoint2f = new MatOfPoint2f(matOfPoint.toArray()); RotatedRect rect = Imgproc.minAreaRect(matOfPoint2f); Rect r = rect.boundingRect(); System.out.println(r.area() + " --- " + i); rectMat = paintRect(rectMat, r, scalar); } return rectMat; }
Example 2
Source File: CVProcessor.java From CVScanner with GNU General Public License v3.0 | 6 votes |
static public Quadrilateral getQuadrilateral(List<MatOfPoint> contours, Size srcSize){ double ratio = getScaleRatio(srcSize); int height = Double.valueOf(srcSize.height / ratio).intValue(); int width = Double.valueOf(srcSize.width / ratio).intValue(); Size size = new Size(width,height); for ( MatOfPoint c: contours ) { MatOfPoint2f c2f = new MatOfPoint2f(c.toArray()); double peri = Imgproc.arcLength(c2f, true); MatOfPoint2f approx = new MatOfPoint2f(); Imgproc.approxPolyDP(c2f, approx, 0.02 * peri, true); Point[] points = approx.toArray(); Log.d("SCANNER", "approx size: " + points.length); // select biggest 4 angles polygon if (points.length == 4) { Point[] foundPoints = sortPoints(points); if (isInside(foundPoints, size) && isLargeEnough(foundPoints, size, 0.25)) { return new Quadrilateral( c , foundPoints ); } else{ //showToast(context, "Try getting closer to the ID"); Log.d("SCANNER", "Not inside defined area"); } } } //showToast(context, "Make sure the ID is on a contrasting background"); return null; }
Example 3
Source File: RecordedEventsFlow.java From SikuliX1 with MIT License | 5 votes |
private int findGoodFeatures(Mat img, int top, int right, int bottom, int left) { top = Math.max(0, top); right = Math.min(img.cols() - 1, right); bottom = Math.min(img.rows() - 1, bottom); left = Math.max(0, left); Mat sub = new Mat(img, new Rect(left, top, right - left, bottom - top)); MatOfPoint features = new MatOfPoint(); Imgproc.goodFeaturesToTrack(sub, features, 0, 0.001, 1.0); return features.toArray().length; }
Example 4
Source File: PrimitiveDetection.java From FTCVision with MIT License | 4 votes |
/** * Locate rectangles in an image * * @param grayImage Grayscale image * @return Rectangle locations */ public RectangleLocationResult locateRectangles(Mat grayImage) { Mat gray = grayImage.clone(); //Filter out some noise by halving then doubling size Filter.downsample(gray, 2); Filter.upsample(gray, 2); //Mat is short for Matrix, and here is used to store an image. //it is n-dimensional, but as an image, is two-dimensional Mat cacheHierarchy = new Mat(); Mat grayTemp = new Mat(); List<Rectangle> rectangles = new ArrayList<>(); List<Contour> contours = new ArrayList<>(); //This finds the edges using a Canny Edge Detector //It is sent the grayscale Image, a temp Mat, the lower detection threshold for an edge, //the higher detection threshold, the Aperture (blurring) of the image - higher is better //for long, smooth edges, and whether a more accurate version (but time-expensive) version //should be used (true = more accurate) //Note: the edges are stored in "grayTemp", which is an image where everything //is black except for gray-scale lines delineating the edges. Imgproc.Canny(gray, grayTemp, 0, THRESHOLD_CANNY, APERTURE_CANNY, true); //make the white lines twice as big, while leaving the image size constant Filter.dilate(gray, 2); List<MatOfPoint> contoursTemp = new ArrayList<>(); //Find contours - the parameters here are very important to compression and retention //grayTemp is the image from which the contours are found, //contoursTemp is where the resultant contours are stored (note: color is not retained), //cacheHierarchy is the parent-child relationship between the contours (e.g. a contour //inside of another is its child), //Imgproc.CV_RETR_LIST disables the hierarchical relationships being returned, //Imgproc.CHAIN_APPROX_SIMPLE means that the contour is compressed from a massive chain of //paired coordinates to just the endpoints of each segment (e.g. an up-right rectangular //contour is encoded with 4 points.) Imgproc.findContours(grayTemp, contoursTemp, cacheHierarchy, Imgproc.CV_RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); //MatOfPoint2f means that is a MatofPoint (Matrix of Points) represented by floats instead of ints MatOfPoint2f approx = new MatOfPoint2f(); //For each contour, test whether the contour is a rectangle //List<Contour> contours = new ArrayList<>() for (MatOfPoint co : contoursTemp) { //converting the MatOfPoint to MatOfPoint2f MatOfPoint2f matOfPoint2f = new MatOfPoint2f(co.toArray()); //converting the matrix to a Contour Contour c = new Contour(co); //Attempt to fit the contour to the best polygon //input: matOfPoint2f, which is the contour found earlier //output: approx, which is the MatOfPoint2f that holds the new polygon that has less vertices //basically, it smooths out the edges using the third parameter as its approximation accuracy //final parameter determines whether the new approximation must be closed (true=closed) Imgproc.approxPolyDP(matOfPoint2f, approx, c.arcLength(true) * EPLISON_APPROX_TOLERANCE_FACTOR, true); //converting the MatOfPoint2f to a contour Contour approxContour = new Contour(approx); //Make sure the contour is big enough, CLOSED (convex), and has exactly 4 points if (approx.toArray().length == 4 && Math.abs(approxContour.area()) > 1000 && approxContour.isClosed()) { //TODO contours and rectangles array may not match up, but why would they? contours.add(approxContour); //Check each angle to be approximately 90 degrees //Done by comparing the three points constituting the angle of each corner double maxCosine = 0; for (int j = 2; j < 5; j++) { double cosine = Math.abs(MathUtil.angle(approx.toArray()[j % 4], approx.toArray()[j - 2], approx.toArray()[j - 1])); maxCosine = Math.max(maxCosine, cosine); } if (maxCosine < MAX_COSINE_VALUE) { //Convert the points to a rectangle instance rectangles.add(new Rectangle(approx.toArray())); } } } return new RectangleLocationResult(contours, rectangles); }
Example 5
Source File: CropImage.java From reader with MIT License | 4 votes |
private void makeDefault() { HighlightView hv = new HighlightView(mImageView); int width = mBitmap.getWidth(); int height = mBitmap.getHeight(); Rect imageRect = new Rect(0, 0, width, height); // make the default size about 4/5 of the width or height // int cropWidth = Math.min(width, height) * 4 / 5; // int cropHeight = cropWidth; int cropWidth = width; int cropHeight = height; if (mAspectX != 0 && mAspectY != 0) { if (mAspectX > mAspectY) { // �����辩缉��� cropHeight = cropWidth * mAspectY ;// mAspectX; } else { cropWidth = cropHeight * mAspectX ;// mAspectY; } } int x = (width - cropWidth) / 2; int y = (height - cropHeight) / 2; Mat imgSource = new Mat(); Utils.bitmapToMat(mBitmap, imgSource); //convert the image to black and white Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY); //convert the image to black and white does (8 bit) Imgproc.Canny(imgSource, imgSource, 50, 50); //apply gaussian blur to smoothen lines of dots Imgproc.GaussianBlur(imgSource, imgSource, new org.opencv.core.Size(5, 5), 5); //find the contours List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Imgproc.findContours(imgSource, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); double maxArea = -1; int maxAreaIdx = -1; Log.d("size",Integer.toString(contours.size())); MatOfPoint temp_contour = contours.get(0); //the largest is at the index 0 for starting point MatOfPoint2f approxCurve = new MatOfPoint2f(); MatOfPoint largest_contour = contours.get(0); //largest_contour.ge List<MatOfPoint> largest_contours = new ArrayList<MatOfPoint>(); //Imgproc.drawContours(imgSource,contours, -1, new Scalar(0, 255, 0), 1); for (int idx = 0; idx < contours.size(); idx++) { temp_contour = contours.get(idx); double contourarea = Imgproc.contourArea(temp_contour); //compare this contour to the previous largest contour found if (contourarea > maxArea) { //check if this contour is a square MatOfPoint2f new_mat = new MatOfPoint2f( temp_contour.toArray() ); int contourSize = (int)temp_contour.total(); MatOfPoint2f approxCurve_temp = new MatOfPoint2f(); Imgproc.approxPolyDP(new_mat, approxCurve_temp, contourSize*0.05, true); if (approxCurve_temp.total() == 4) { maxArea = contourarea; maxAreaIdx = idx; approxCurve=approxCurve_temp; largest_contour = temp_contour; } } } Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BayerBG2RGB); double[] temp_double; float x1, y1, x2, y2; temp_double = approxCurve.get(0,0); Point p1 = new Point(temp_double[0], temp_double[1]); x1 = (float)temp_double[0]; y1 = (float)temp_double[1]; //Core.circle(imgSource,p1,55,new Scalar(0,0,255)); //Imgproc.warpAffine(sourceImage, dummy, rotImage,sourceImage.size()); temp_double = approxCurve.get(1,0); Point p2 = new Point(temp_double[0], temp_double[1]); // Core.circle(imgSource,p2,150,new Scalar(255,255,255)); temp_double = approxCurve.get(2,0); Point p3 = new Point(temp_double[0], temp_double[1]); x2 = (float)temp_double[0]; y2 = (float)temp_double[1]; //Core.circle(imgSource,p3,200,new Scalar(255,0,0)); temp_double = approxCurve.get(3,0); Point p4 = new Point(temp_double[0], temp_double[1]); RectF cropRect = new RectF(x, y, x + cropWidth, y + cropHeight); //RectF cropRect = new RectF(x1, y1, x2, y2); // �����辩缉��� hv.setup(mImageMatrix, imageRect, cropRect, mCircleCrop,false /*mAspectX != 0 && mAspectY != 0*/); mImageView.add(hv); }
Example 6
Source File: ContoursUtils.java From super-cloudops with Apache License 2.0 | 3 votes |
/** * 返回边缘检测之后的最大矩形 * * @param cannyMat * Canny之后的mat矩阵 * @return */ public static RotatedRect findMaxRect(Mat cannyMat) { MatOfPoint maxContour = findMaxContour(cannyMat); MatOfPoint2f matOfPoint2f = new MatOfPoint2f(maxContour.toArray()); RotatedRect rect = Imgproc.minAreaRect(matOfPoint2f); return rect; }
Example 7
Source File: ContoursUtils.java From super-cloudops with Apache License 2.0 | 3 votes |
/** * 利用函数approxPolyDP来对指定的点集进行逼近 精确度设置好,效果还是比较好的 * * @param cannyMat * @param threshold * 阀值(精确度) * @return */ public static Point[] useApproxPolyDPFindPoints(Mat cannyMat, double threshold) { MatOfPoint maxContour = findMaxContour(cannyMat); MatOfPoint2f approxCurve = new MatOfPoint2f(); MatOfPoint2f matOfPoint2f = new MatOfPoint2f(maxContour.toArray()); // 原始曲线与近似曲线之间的最大距离设置为0.01,true表示是闭合的曲线 Imgproc.approxPolyDP(matOfPoint2f, approxCurve, threshold, true); Point[] points = approxCurve.toArray(); return points; }