Java Code Examples for org.apache.crunch.Pipeline#done()
The following examples show how to use
org.apache.crunch.Pipeline#done() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: JoinFilterExampleCrunch.java From hadoop-arch-book with Apache License 2.0 | 5 votes |
public int run(String[] args) throws Exception { String fooInputPath = args[0]; String barInputPath = args[1]; String outputPath = args[2]; int fooValMax = Integer.parseInt(args[3]); int joinValMax = Integer.parseInt(args[4]); int numberOfReducers = Integer.parseInt(args[5]); Pipeline pipeline = new MRPipeline(JoinFilterExampleCrunch.class, getConf()); //<1> PCollection<String> fooLines = pipeline.readTextFile(fooInputPath); //<2> PCollection<String> barLines = pipeline.readTextFile(barInputPath); PTable<Long, Pair<Long, Integer>> fooTable = fooLines.parallelDo( //<3> new FooIndicatorFn(), Avros.tableOf(Avros.longs(), Avros.pairs(Avros.longs(), Avros.ints()))); fooTable = fooTable.filter(new FooFilter(fooValMax)); //<4> PTable<Long, Integer> barTable = barLines.parallelDo(new BarIndicatorFn(), Avros.tableOf(Avros.longs(), Avros.ints())); DefaultJoinStrategy<Long, Pair<Long, Integer>, Integer> joinStrategy = //<5> new DefaultJoinStrategy <Long, Pair<Long, Integer>, Integer> (numberOfReducers); PTable<Long, Pair<Pair<Long, Integer>, Integer>> joinedTable = joinStrategy //<6> .join(fooTable, barTable, JoinType.INNER_JOIN); PTable<Long, Pair<Pair<Long, Integer>, Integer>> filteredTable = joinedTable.filter(new JoinFilter(joinValMax)); filteredTable.write(At.textFile(outputPath), WriteMode.OVERWRITE); //<7> PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example 2
Source File: WordCount.java From tutorials with MIT License | 5 votes |
public int run(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: hadoop jar crunch-1.0.0-SNAPSHOT-job.jar" + " [generic options] input output"); System.err.println(); GenericOptionsParser.printGenericCommandUsage(System.err); return 1; } String inputPath = args[0]; String outputPath = args[1]; // Create an object to coordinate pipeline creation and execution. Pipeline pipeline = new MRPipeline(WordCount.class, getConf()); // Reference a given text file as a collection of Strings. PCollection<String> lines = pipeline.readTextFile(inputPath); // Define a function that splits each line in a PCollection of Strings into // a PCollection made up of the individual words in the file. // The second argument sets the serialization format. PCollection<String> words = lines.parallelDo(new Tokenizer(), Writables.strings()); // Take the collection of words and remove known stop words. PCollection<String> noStopWords = words.filter(new StopWordFilter()); // The count method applies a series of Crunch primitives and returns // a map of the unique words in the input PCollection to their counts. PTable<String, Long> counts = noStopWords.count(); // Instruct the pipeline to write the resulting counts to a text file. pipeline.writeTextFile(counts, outputPath); // Execute the pipeline as a MapReduce. PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example 3
Source File: LegacyHdfs2Cass.java From hdfs2cass with Apache License 2.0 | 5 votes |
@Override public int run(String[] args) throws Exception { new JCommander(this, args); URI outputUri = URI.create(output); // Our crunch job is a MapReduce job Pipeline pipeline = new MRPipeline(LegacyHdfs2Cass.class, getConf()); // Parse & fetch info about target Cassandra cluster CassandraParams params = CassandraParams.parse(outputUri); // Read records from Avro files in inputFolder PCollection<ByteBuffer> records = pipeline.read(From.avroFile(inputList(input), Avros.records(ByteBuffer.class))); // Transform the input String protocol = outputUri.getScheme(); if (protocol.equalsIgnoreCase("thrift")) { records // First convert ByteBuffers to ThriftRecords .parallelDo(new LegacyHdfsToThrift(), ThriftRecord.PTYPE) // Then group the ThriftRecords in preparation for writing them .parallelDo(new ThriftRecord.AsPair(), ThriftRecord.AsPair.PTYPE) .groupByKey(params.createGroupingOptions()) // Finally write the ThriftRecords to Cassandra .write(new ThriftTarget(outputUri, params)); } else if (protocol.equalsIgnoreCase("cql")) { records // In case of CQL, convert ByteBuffers to CQLRecords .parallelDo(new LegacyHdfsToCQL(), CQLRecord.PTYPE) .by(params.getKeyFn(), Avros.bytes()) .groupByKey(params.createGroupingOptions()) .write(new CQLTarget(outputUri, params)); } // Execute the pipeline PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example 4
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 5 votes |
private void runCheckpointPipeline(View<Record> inputView, View<Record> outputView) { Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); PCollection<GenericData.Record> data = pipeline.read( CrunchDatasets.asSource(inputView)); pipeline.write(data, CrunchDatasets.asTarget(outputView), Target.WriteMode.CHECKPOINT); pipeline.done(); }
Example 5
Source File: Hdfs2Cass.java From hdfs2cass with Apache License 2.0 | 4 votes |
@Override public int run(String[] args) throws Exception { new JCommander(this, args); URI outputUri = URI.create(output); // Our crunch job is a MapReduce job Configuration conf = getConf(); conf.setBoolean(MRJobConfig.MAP_SPECULATIVE, Boolean.FALSE); conf.setBoolean(MRJobConfig.REDUCE_SPECULATIVE, Boolean.FALSE); Pipeline pipeline = new MRPipeline(Hdfs2Cass.class, conf); // Parse & fetch info about target Cassandra cluster CassandraParams params = CassandraParams.parse(outputUri); PCollection<GenericRecord> records = ((PCollection<GenericRecord>)(PCollection) pipeline.read(From.avroFile(inputList(input)))); String protocol = outputUri.getScheme(); if (protocol.equalsIgnoreCase("thrift")) { records // First convert ByteBuffers to ThriftRecords .parallelDo(new AvroToThrift(rowkey, timestamp, ttl, ignore), ThriftRecord.PTYPE) // Then group the ThriftRecords in preparation for writing them .parallelDo(new ThriftRecord.AsPair(), ThriftRecord.AsPair.PTYPE) .groupByKey(params.createGroupingOptions()) // Finally write the ThriftRecords to Cassandra .write(new ThriftTarget(outputUri, params)); } else if (protocol.equalsIgnoreCase("cql")) { records // In case of CQL, convert ByteBuffers to CQLRecords .parallelDo(new AvroToCQL(rowkey, timestamp, ttl, ignore), CQLRecord.PTYPE) .by(params.getKeyFn(), Avros.bytes()) .groupByKey(params.createGroupingOptions()) .write(new CQLTarget(outputUri, params)); } // Execute the pipeline PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example 6
Source File: TransformTask.java From kite with Apache License 2.0 | 4 votes |
public PipelineResult run() throws IOException { boolean isLocal = (isLocal(from.getDataset()) || isLocal(to.getDataset())); if (isLocal) { // copy to avoid making changes to the caller's configuration Configuration conf = new Configuration(getConf()); conf.set("mapreduce.framework.name", "local"); setConf(conf); } if (isHive(from) || isHive(to)) { setConf(addHiveDelegationToken(getConf())); // add jars needed for metastore interaction to the classpath if (!isLocal) { Class<?> fb303Class, thriftClass; try { // attempt to use libfb303 and libthrift 0.9.2 when async was added fb303Class = Class.forName( "com.facebook.fb303.FacebookService.AsyncProcessor"); thriftClass = Class.forName( "org.apache.thrift.TBaseAsyncProcessor"); } catch (ClassNotFoundException e) { try { // fallback to 0.9.0 or earlier fb303Class = Class.forName( "com.facebook.fb303.FacebookBase"); thriftClass = Class.forName( "org.apache.thrift.TBase"); } catch (ClassNotFoundException real) { throw new DatasetOperationException( "Cannot find thrift dependencies", real); } } TaskUtil.configure(getConf()) .addJarForClass(Encoder.class) // commons-codec .addJarForClass(Log.class) // commons-logging .addJarForClass(CompressorInputStream.class) // commons-compress .addJarForClass(ApiAdapter.class) // datanucleus-core .addJarForClass(JDOAdapter.class) // datanucleus-api-jdo .addJarForClass(SQLQuery.class) // datanucleus-rdbms .addJarForClass(JDOHelper.class) // jdo-api .addJarForClass(Transaction.class) // jta .addJarForClass(fb303Class) // libfb303 .addJarForClass(thriftClass) // libthrift .addJarForClass(HiveMetaStore.class) // hive-metastore .addJarForClass(HiveConf.class); // hive-exec } } PType<T> toPType = ptype(to); MapFn<T, T> validate = new CheckEntityClass<T>(to.getType()); Pipeline pipeline = new MRPipeline(getClass(), getConf()); PCollection<T> collection = pipeline.read(CrunchDatasets.asSource(from)) .parallelDo(transform, toPType).parallelDo(validate, toPType); if (compact) { // the transform must be run before partitioning collection = CrunchDatasets.partition(collection, to, numWriters, numPartitionWriters); } pipeline.write(collection, CrunchDatasets.asTarget(to), mode); PipelineResult result = pipeline.done(); StageResult sr = Iterables.getFirst(result.getStageResults(), null); if (sr != null && MAP_INPUT_RECORDS != null) { this.count = sr.getCounterValue(MAP_INPUT_RECORDS); } return result; }