Java Code Examples for com.google.zxing.BinaryBitmap#getBlackRow()
The following examples show how to use
com.google.zxing.BinaryBitmap#getBlackRow() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: OneDReader.java From ScreenCapture with MIT License | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } int middle = height / 2; for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 2
Source File: OneDReader.java From Tesseract-OCR-Scanner with Apache License 2.0 | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } int middle = height / 2; for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 3
Source File: OneDReader.java From QrCodeScanner with GNU General Public License v3.0 | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } int middle = height / 2; for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 4
Source File: OneDReader.java From ZXing-Orient with Apache License 2.0 | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); int middle = height >> 1; boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 5
Source File: OneDReader.java From analyzer-of-android-for-Apache-Weex with Apache License 2.0 | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); int middle = height >> 1; boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 6
Source File: OneDReader.java From weex with Apache License 2.0 | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); int middle = height >> 1; boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 7
Source File: OneDReader.java From barcodescanner-lib-aar with MIT License | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); int middle = height >> 1; boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 8
Source File: OneDReader.java From reacteu-app with MIT License | 4 votes |
/** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); int middle = height >> 1; boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) >> 1; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException nfe) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<DecodeHintType,Object>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }
Example 9
Source File: OneDReader.java From RipplePower with Apache License 2.0 | 4 votes |
/** * We're going to examine rows from the middle outward, searching * alternately above and below the middle, and farther out each time. * rowStep is the number of rows between each successive attempt above and * below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. rowStep is bigger as * the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty * good; we try more of the image if "trying harder". * * @param image * The image to decode * @param hints * Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException * Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType, ?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); int middle = height >> 1; boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle // half of the image } for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking // at next: int rowStepsAboveOrBelow = (x + 1) / 2; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException ignored) { continue; } // While we have the image data in a BitArray, it's fairly cheap to // reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in // the life of this method // since we want to avoid drawing the wrong points after // flipping the row, and, // don't want to clutter with noise from every single row // scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType, Object> newHints = new EnumMap<>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); }