Java Code Examples for org.apache.commons.math3.exception.util.LocalizedFormats#CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N
The following examples show how to use
org.apache.commons.math3.exception.util.LocalizedFormats#CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: Complex.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 2
Source File: Complex.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 3
Source File: Complex.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 4
Source File: Complex.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 5
Source File: Math_5_Complex_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 6
Source File: Elixir_0026_t.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 7
Source File: Elixir_0026_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 8
Source File: JGenProg2015_005_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 9
Source File: JGenProg2015_005_t.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 10
Source File: JGenProg2017_0026_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 11
Source File: Complex.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 12
Source File: Cardumen_00220_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 13
Source File: Cardumen_00220_t.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 14
Source File: Complex.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 15
Source File: Cardumen_00170_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 16
Source File: Cardumen_0046_t.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 17
Source File: Cardumen_0046_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 18
Source File: Arja_0033_t.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 19
Source File: Arja_0033_s.java From coming with MIT License | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }
Example 20
Source File: 1_Complex.java From SimFix with GNU General Public License v2.0 | 5 votes |
/** * Computes the n-th roots of this complex number. * The nth roots are defined by the formula: * <pre> * <code> * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n)) * </code> * </pre> * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} * are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. * <br/> * If one or both parts of this complex number is NaN, a list with just * one element, {@link #NaN} is returned. * if neither part is NaN, but at least one part is infinite, the result * is a one-element list containing {@link #INF}. * * @param n Degree of root. * @return a List<Complex> of all {@code n}-th roots of {@code this}. * @throws NotPositiveException if {@code n <= 0}. * @since 2.0 */ public List<Complex> nthRoot(int n) throws NotPositiveException { if (n <= 0) { throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } final List<Complex> result = new ArrayList<Complex>(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; }