Java Code Examples for org.nd4j.linalg.api.ndarray.INDArray#min()
The following examples show how to use
org.nd4j.linalg.api.ndarray.INDArray#min() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: PreProcessor3D4DTest.java From nd4j with Apache License 2.0 | 6 votes |
public Construct4dDataSet(int nExamples, int nChannels, int height, int width) { INDArray allImages = Nd4j.rand(new int[] {nExamples, nChannels, height, width}); allImages.get(NDArrayIndex.all(), NDArrayIndex.point(1), NDArrayIndex.all(), NDArrayIndex.all()).muli(100) .addi(200); allImages.get(NDArrayIndex.all(), NDArrayIndex.point(2), NDArrayIndex.all(), NDArrayIndex.all()).muli(0.001) .subi(10); INDArray labels = Nd4j.linspace(1, nChannels, nChannels).reshape(nChannels, 1); sampleDataSet = new DataSet(allImages, labels); expectedMean = allImages.mean(0, 2, 3); expectedStd = allImages.std(0, 2, 3); expectedLabelMean = labels.mean(0); expectedLabelStd = labels.std(0); expectedMin = allImages.min(0, 2, 3); expectedMax = allImages.max(0, 2, 3); }
Example 2
Source File: SpTree.java From deeplearning4j with Apache License 2.0 | 6 votes |
public SpTree(INDArray data, Collection<INDArray> indices, String similarityFunction) { this.indices = indices; this.N = data.rows(); this.D = data.columns(); this.similarityFunction = similarityFunction; data = data.dup(); INDArray meanY = data.mean(0); INDArray minY = data.min(0); INDArray maxY = data.max(0); INDArray width = Nd4j.create(data.dataType(), meanY.shape()); for (int i = 0; i < width.length(); i++) { width.putScalar(i, Math.max(maxY.getDouble(i) - meanY.getDouble(i), meanY.getDouble(i) - minY.getDouble(i)) + Nd4j.EPS_THRESHOLD); } try(MemoryWorkspace ws = Nd4j.getMemoryManager().scopeOutOfWorkspaces()) { init(null, data, meanY, width, indices, similarityFunction); fill(N); } }
Example 3
Source File: DistributionStats.java From nd4j with Apache License 2.0 | 5 votes |
/** * @param mean row vector of means * @param std row vector of standard deviations */ public DistributionStats(@NonNull INDArray mean, @NonNull INDArray std) { Transforms.max(std, Nd4j.EPS_THRESHOLD, false); if (std.min(1) == Nd4j.scalar(Nd4j.EPS_THRESHOLD)) { logger.info("API_INFO: Std deviation found to be zero. Transform will round up to epsilon to avoid nans."); } this.mean = mean; this.std = std; }
Example 4
Source File: MinMaxStats.java From nd4j with Apache License 2.0 | 5 votes |
/** * Add rows of data to the statistics * * @param data the matrix containing multiple rows of data to include * @param mask (optionally) the mask of the data, useful for e.g. time series */ public MinMaxStats.Builder add(@NonNull INDArray data, INDArray mask) { data = DataSetUtil.tailor2d(data, mask); if (data == null) { // Nothing to add. Either data is empty or completely masked. Just skip it, otherwise we will get // null pointer exceptions. return this; } INDArray tad = data.javaTensorAlongDimension(0, 0); INDArray batchMin = data.min(0); INDArray batchMax = data.max(0); if (!Arrays.equals(batchMin.shape(), batchMax.shape())) throw new IllegalStateException( "Data min and max must be same shape. Likely a bug in the operation changing the input?"); if (runningLower == null) { // First batch // Create copies because min and max are views to the same data set, which will cause problems with the // side effects of Transforms.min and Transforms.max runningLower = batchMin.dup(); runningUpper = batchMax.dup(); } else { // Update running bounds Transforms.min(runningLower, batchMin, false); Transforms.max(runningUpper, batchMax, false); } return this; }
Example 5
Source File: FeatureUtil.java From nd4j with Apache License 2.0 | 5 votes |
/** * Scales the ndarray columns * to the given min/max values * * @param min the minimum number * @param max the max number */ public static void scaleMinMax(double min, double max, INDArray toScale) { //X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min INDArray min2 = toScale.min(0); INDArray max2 = toScale.max(0); INDArray std = toScale.subRowVector(min2).diviRowVector(max2.sub(min2)); INDArray scaled = std.mul(max - min).addi(min); toScale.assign(scaled); }
Example 6
Source File: FeatureUtil.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * Scales the ndarray columns * to the given min/max values * * @param min the minimum number * @param max the max number */ public static void scaleMinMax(double min, double max, INDArray toScale) { //X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min INDArray min2 = toScale.min(0); INDArray max2 = toScale.max(0); INDArray std = toScale.subRowVector(min2).diviRowVector(max2.sub(min2)); INDArray scaled = std.mul(max - min).addi(min); toScale.assign(scaled); }
Example 7
Source File: QuadTree.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * Pass in a matrix * @param data */ public QuadTree(INDArray data) { INDArray meanY = data.mean(0); INDArray minY = data.min(0); INDArray maxY = data.max(0); init(data, meanY.getDouble(0), meanY.getDouble(1), max(maxY.getDouble(0) - meanY.getDouble(0), meanY.getDouble(0) - minY.getDouble(0)) + Nd4j.EPS_THRESHOLD, max(maxY.getDouble(1) - meanY.getDouble(1), meanY.getDouble(1) - minY.getDouble(1)) + Nd4j.EPS_THRESHOLD); fill(); }