Java Code Examples for org.apache.flink.api.java.operators.IterativeDataSet#registerAggregationConvergenceCriterion()

The following examples show how to use org.apache.flink.api.java.operators.IterativeDataSet#registerAggregationConvergenceCriterion() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: AggregatorConvergenceITCase.java    From Flink-CEPplus with Apache License 2.0 5 votes vote down vote up
@Test
public void testConnectedComponentsWithParametrizableConvergence() throws Exception {

	// name of the aggregator that checks for convergence
	final String updatedElements = "updated.elements.aggr";

	// the iteration stops if less than this number of elements change value
	final long convergenceThreshold = 3;

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

	DataSet<Tuple2<Long, Long>> initialSolutionSet = env.fromCollection(verticesInput);
	DataSet<Tuple2<Long, Long>> edges = env.fromCollection(edgesInput);

	IterativeDataSet<Tuple2<Long, Long>> iteration = initialSolutionSet.iterate(10);

	// register the convergence criterion
	iteration.registerAggregationConvergenceCriterion(updatedElements,
		new LongSumAggregator(), new UpdatedElementsConvergenceCriterion(convergenceThreshold));

	DataSet<Tuple2<Long, Long>> verticesWithNewComponents = iteration.join(edges).where(0).equalTo(0)
		.with(new NeighborWithComponentIDJoin())
		.groupBy(0).min(1);

	DataSet<Tuple2<Long, Long>> updatedComponentId =
		verticesWithNewComponents.join(iteration).where(0).equalTo(0)
			.flatMap(new MinimumIdFilter(updatedElements));

	List<Tuple2<Long, Long>> result = iteration.closeWith(updatedComponentId).collect();
	Collections.sort(result, new TestBaseUtils.TupleComparator<Tuple2<Long, Long>>());

	assertEquals(expectedResult, result);
}
 
Example 2
Source File: AggregatorsITCase.java    From Flink-CEPplus with Apache License 2.0 5 votes vote down vote up
@Test
public void testAggregatorWithoutParameterForIterate() throws Exception {
	/*
	 * Test aggregator without parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregator aggr = new LongSumAggregator();
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterion());

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMap());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 3
Source File: AggregatorsITCase.java    From Flink-CEPplus with Apache License 2.0 5 votes vote down vote up
@Test
public void testAggregatorWithParameterForIterate() throws Exception {
	/*
	 * Test aggregator with parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregatorWithParameter aggr = new LongSumAggregatorWithParameter(0);
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterion());

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMapWithParam());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 4
Source File: AggregatorsITCase.java    From Flink-CEPplus with Apache License 2.0 5 votes vote down vote up
@Test
public void testConvergenceCriterionWithParameterForIterate() throws Exception {
	/*
	 * Test convergence criterion with parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregator aggr = new LongSumAggregator();
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterionWithParam(3));

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMap());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 5
Source File: AggregatorConvergenceITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testConnectedComponentsWithParametrizableConvergence() throws Exception {

	// name of the aggregator that checks for convergence
	final String updatedElements = "updated.elements.aggr";

	// the iteration stops if less than this number of elements change value
	final long convergenceThreshold = 3;

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

	DataSet<Tuple2<Long, Long>> initialSolutionSet = env.fromCollection(verticesInput);
	DataSet<Tuple2<Long, Long>> edges = env.fromCollection(edgesInput);

	IterativeDataSet<Tuple2<Long, Long>> iteration = initialSolutionSet.iterate(10);

	// register the convergence criterion
	iteration.registerAggregationConvergenceCriterion(updatedElements,
		new LongSumAggregator(), new UpdatedElementsConvergenceCriterion(convergenceThreshold));

	DataSet<Tuple2<Long, Long>> verticesWithNewComponents = iteration.join(edges).where(0).equalTo(0)
		.with(new NeighborWithComponentIDJoin())
		.groupBy(0).min(1);

	DataSet<Tuple2<Long, Long>> updatedComponentId =
		verticesWithNewComponents.join(iteration).where(0).equalTo(0)
			.flatMap(new MinimumIdFilter(updatedElements));

	List<Tuple2<Long, Long>> result = iteration.closeWith(updatedComponentId).collect();
	Collections.sort(result, new TestBaseUtils.TupleComparator<Tuple2<Long, Long>>());

	assertEquals(expectedResult, result);
}
 
Example 6
Source File: AggregatorsITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testAggregatorWithoutParameterForIterate() throws Exception {
	/*
	 * Test aggregator without parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregator aggr = new LongSumAggregator();
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterion());

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMap());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 7
Source File: AggregatorsITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testAggregatorWithParameterForIterate() throws Exception {
	/*
	 * Test aggregator with parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregatorWithParameter aggr = new LongSumAggregatorWithParameter(0);
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterion());

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMapWithParam());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 8
Source File: AggregatorsITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testConvergenceCriterionWithParameterForIterate() throws Exception {
	/*
	 * Test convergence criterion with parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregator aggr = new LongSumAggregator();
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterionWithParam(3));

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMap());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 9
Source File: AggregatorConvergenceITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testConnectedComponentsWithParametrizableConvergence() throws Exception {

	// name of the aggregator that checks for convergence
	final String updatedElements = "updated.elements.aggr";

	// the iteration stops if less than this number of elements change value
	final long convergenceThreshold = 3;

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

	DataSet<Tuple2<Long, Long>> initialSolutionSet = env.fromCollection(verticesInput);
	DataSet<Tuple2<Long, Long>> edges = env.fromCollection(edgesInput);

	IterativeDataSet<Tuple2<Long, Long>> iteration = initialSolutionSet.iterate(10);

	// register the convergence criterion
	iteration.registerAggregationConvergenceCriterion(updatedElements,
		new LongSumAggregator(), new UpdatedElementsConvergenceCriterion(convergenceThreshold));

	DataSet<Tuple2<Long, Long>> verticesWithNewComponents = iteration.join(edges).where(0).equalTo(0)
		.with(new NeighborWithComponentIDJoin())
		.groupBy(0).min(1);

	DataSet<Tuple2<Long, Long>> updatedComponentId =
		verticesWithNewComponents.join(iteration).where(0).equalTo(0)
			.flatMap(new MinimumIdFilter(updatedElements));

	List<Tuple2<Long, Long>> result = iteration.closeWith(updatedComponentId).collect();
	Collections.sort(result, new TestBaseUtils.TupleComparator<Tuple2<Long, Long>>());

	assertEquals(expectedResult, result);
}
 
Example 10
Source File: AggregatorsITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testAggregatorWithoutParameterForIterate() throws Exception {
	/*
	 * Test aggregator without parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregator aggr = new LongSumAggregator();
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterion());

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMap());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 11
Source File: AggregatorsITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testAggregatorWithParameterForIterate() throws Exception {
	/*
	 * Test aggregator with parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregatorWithParameter aggr = new LongSumAggregatorWithParameter(0);
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterion());

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMapWithParam());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 12
Source File: AggregatorsITCase.java    From flink with Apache License 2.0 5 votes vote down vote up
@Test
public void testConvergenceCriterionWithParameterForIterate() throws Exception {
	/*
	 * Test convergence criterion with parameter for iterate
	 */

	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(parallelism);

	DataSet<Integer> initialSolutionSet = CollectionDataSets.getIntegerDataSet(env);
	IterativeDataSet<Integer> iteration = initialSolutionSet.iterate(MAX_ITERATIONS);

	// register aggregator
	LongSumAggregator aggr = new LongSumAggregator();
	iteration.registerAggregator(NEGATIVE_ELEMENTS_AGGR, aggr);

	// register convergence criterion
	iteration.registerAggregationConvergenceCriterion(NEGATIVE_ELEMENTS_AGGR, aggr,
			new NegativeElementsConvergenceCriterionWithParam(3));

	DataSet<Integer> updatedDs = iteration.map(new SubtractOneMap());
	List<Integer> result = iteration.closeWith(updatedDs).collect();
	Collections.sort(result);

	List<Integer> expected = Arrays.asList(-3, -2, -2, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1);

	assertEquals(expected, result);
}
 
Example 13
Source File: PageRank.java    From Flink-CEPplus with Apache License 2.0 4 votes vote down vote up
@Override
public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input)
		throws Exception {
	// vertex degree
	DataSet<Vertex<K, Degrees>> vertexDegree = input
		.run(new VertexDegrees<K, VV, EV>()
			.setIncludeZeroDegreeVertices(includeZeroDegreeVertices)
			.setParallelism(parallelism));

	// vertex count
	DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree);

	// s, t, d(s)
	DataSet<Edge<K, LongValue>> edgeSourceDegree = input
		.run(new EdgeSourceDegrees<K, VV, EV>()
			.setParallelism(parallelism))
		.map(new ExtractSourceDegree<>())
			.setParallelism(parallelism)
			.name("Extract source degree");

	// vertices with zero in-edges
	DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree
		.flatMap(new InitializeSourceVertices<>())
			.setParallelism(parallelism)
			.name("Initialize source vertex scores");

	// s, initial pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree
		.map(new InitializeVertexScores<>())
		.withBroadcastSet(vertexCount, VERTEX_COUNT)
			.setParallelism(parallelism)
			.name("Initialize scores");

	IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores
		.iterate(maxIterations)
		.setParallelism(parallelism);

	// s, projected pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative
		.coGroup(edgeSourceDegree)
		.where(0)
		.equalTo(0)
		.with(new SendScore<>())
			.setParallelism(parallelism)
			.name("Send score")
		.groupBy(0)
		.reduce(new SumScore<>())
		.setCombineHint(CombineHint.HASH)
			.setParallelism(parallelism)
			.name("Sum");

	// ignored ID, total pagerank
	DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores
		.reduce(new SumVertexScores<>())
			.setParallelism(parallelism)
			.name("Sum");

	// s, adjusted pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores
		.union(sourceVertices)
			.name("Union with source vertices")
		.map(new AdjustScores<>(dampingFactor))
			.withBroadcastSet(sumOfScores, SUM_OF_SCORES)
			.withBroadcastSet(vertexCount, VERTEX_COUNT)
				.setParallelism(parallelism)
				.name("Adjust scores");

	DataSet<Tuple2<K, DoubleValue>> passThrough;

	if (convergenceThreshold < Double.MAX_VALUE) {
		passThrough = iterative
			.join(adjustedScores)
			.where(0)
			.equalTo(0)
			.with(new ChangeInScores<>())
				.setParallelism(parallelism)
				.name("Change in scores");

		iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold));
	} else {
		passThrough = adjustedScores;
	}

	return iterative
		.closeWith(passThrough)
		.map(new TranslateResult<>())
			.setParallelism(parallelism)
			.name("Map result");
}
 
Example 14
Source File: PageRank.java    From flink with Apache License 2.0 4 votes vote down vote up
@Override
public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input)
		throws Exception {
	// vertex degree
	DataSet<Vertex<K, Degrees>> vertexDegree = input
		.run(new VertexDegrees<K, VV, EV>()
			.setIncludeZeroDegreeVertices(includeZeroDegreeVertices)
			.setParallelism(parallelism));

	// vertex count
	DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree);

	// s, t, d(s)
	DataSet<Edge<K, LongValue>> edgeSourceDegree = input
		.run(new EdgeSourceDegrees<K, VV, EV>()
			.setParallelism(parallelism))
		.map(new ExtractSourceDegree<>())
			.setParallelism(parallelism)
			.name("Extract source degree");

	// vertices with zero in-edges
	DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree
		.flatMap(new InitializeSourceVertices<>())
			.setParallelism(parallelism)
			.name("Initialize source vertex scores");

	// s, initial pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree
		.map(new InitializeVertexScores<>())
		.withBroadcastSet(vertexCount, VERTEX_COUNT)
			.setParallelism(parallelism)
			.name("Initialize scores");

	IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores
		.iterate(maxIterations)
		.setParallelism(parallelism);

	// s, projected pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative
		.coGroup(edgeSourceDegree)
		.where(0)
		.equalTo(0)
		.with(new SendScore<>())
			.setParallelism(parallelism)
			.name("Send score")
		.groupBy(0)
		.reduce(new SumScore<>())
		.setCombineHint(CombineHint.HASH)
			.setParallelism(parallelism)
			.name("Sum");

	// ignored ID, total pagerank
	DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores
		.reduce(new SumVertexScores<>())
			.setParallelism(parallelism)
			.name("Sum");

	// s, adjusted pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores
		.union(sourceVertices)
			.name("Union with source vertices")
		.map(new AdjustScores<>(dampingFactor))
			.withBroadcastSet(sumOfScores, SUM_OF_SCORES)
			.withBroadcastSet(vertexCount, VERTEX_COUNT)
				.setParallelism(parallelism)
				.name("Adjust scores");

	DataSet<Tuple2<K, DoubleValue>> passThrough;

	if (convergenceThreshold < Double.MAX_VALUE) {
		passThrough = iterative
			.join(adjustedScores)
			.where(0)
			.equalTo(0)
			.with(new ChangeInScores<>())
				.setParallelism(parallelism)
				.name("Change in scores");

		iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold));
	} else {
		passThrough = adjustedScores;
	}

	return iterative
		.closeWith(passThrough)
		.map(new TranslateResult<>())
			.setParallelism(parallelism)
			.name("Map result");
}
 
Example 15
Source File: PageRank.java    From flink with Apache License 2.0 4 votes vote down vote up
@Override
public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input)
		throws Exception {
	// vertex degree
	DataSet<Vertex<K, Degrees>> vertexDegree = input
		.run(new VertexDegrees<K, VV, EV>()
			.setIncludeZeroDegreeVertices(includeZeroDegreeVertices)
			.setParallelism(parallelism));

	// vertex count
	DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree);

	// s, t, d(s)
	DataSet<Edge<K, LongValue>> edgeSourceDegree = input
		.run(new EdgeSourceDegrees<K, VV, EV>()
			.setParallelism(parallelism))
		.map(new ExtractSourceDegree<>())
			.setParallelism(parallelism)
			.name("Extract source degree");

	// vertices with zero in-edges
	DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree
		.flatMap(new InitializeSourceVertices<>())
			.setParallelism(parallelism)
			.name("Initialize source vertex scores");

	// s, initial pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree
		.map(new InitializeVertexScores<>())
		.withBroadcastSet(vertexCount, VERTEX_COUNT)
			.setParallelism(parallelism)
			.name("Initialize scores");

	IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores
		.iterate(maxIterations)
		.setParallelism(parallelism);

	// s, projected pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative
		.coGroup(edgeSourceDegree)
		.where(0)
		.equalTo(0)
		.with(new SendScore<>())
			.setParallelism(parallelism)
			.name("Send score")
		.groupBy(0)
		.reduce(new SumScore<>())
		.setCombineHint(CombineHint.HASH)
			.setParallelism(parallelism)
			.name("Sum");

	// ignored ID, total pagerank
	DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores
		.reduce(new SumVertexScores<>())
			.setParallelism(parallelism)
			.name("Sum");

	// s, adjusted pagerank(s)
	DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores
		.union(sourceVertices)
			.name("Union with source vertices")
		.map(new AdjustScores<>(dampingFactor))
			.withBroadcastSet(sumOfScores, SUM_OF_SCORES)
			.withBroadcastSet(vertexCount, VERTEX_COUNT)
				.setParallelism(parallelism)
				.name("Adjust scores");

	DataSet<Tuple2<K, DoubleValue>> passThrough;

	if (convergenceThreshold < Double.MAX_VALUE) {
		passThrough = iterative
			.join(adjustedScores)
			.where(0)
			.equalTo(0)
			.with(new ChangeInScores<>())
				.setParallelism(parallelism)
				.name("Change in scores");

		iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold));
	} else {
		passThrough = adjustedScores;
	}

	return iterative
		.closeWith(passThrough)
		.map(new TranslateResult<>())
			.setParallelism(parallelism)
			.name("Map result");
}