Java Code Examples for org.deeplearning4j.arbiter.optimize.api.ParameterSpace#setIndices()
The following examples show how to use
org.deeplearning4j.arbiter.optimize.api.ParameterSpace#setIndices() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: BaseCandidateGenerator.java From deeplearning4j with Apache License 2.0 | 6 votes |
protected void initialize() { if(!initDone) { //First: collect leaf parameter spaces objects and remove duplicates List<ParameterSpace> noDuplicatesList = LeafUtils.getUniqueObjects(parameterSpace.collectLeaves()); //Second: assign each a number int i = 0; for (ParameterSpace ps : noDuplicatesList) { int np = ps.numParameters(); if (np == 1) { ps.setIndices(i++); } else { int[] values = new int[np]; for (int j = 0; j < np; j++) values[j] = i++; ps.setIndices(values); } } initDone = true; } }
Example 2
Source File: BaseUpdaterSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public void setIndices(int... indices){ int soFar = 0; for(ParameterSpace p : collectLeaves()){ int numParams = p.numParameters(); if(numParams <= 0){ continue; } int[] subset = Arrays.copyOfRange(indices, soFar, soFar + numParams); p.setIndices(subset); } }
Example 3
Source File: TestMultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testDropout(){ MultiLayerSpace mls = new MultiLayerSpace.Builder().updater(new Sgd(0.005)).seed(12345) .addLayer(new ConvolutionLayerSpace.Builder().nOut(2) .dropOut(new ContinuousParameterSpace(0.4,0.6)) .build()) .addLayer(new GlobalPoolingLayerSpace.Builder().dropOut(new ContinuousParameterSpace(0.4,0.6)).build()) .addLayer(new OutputLayerSpace.Builder().activation(Activation.SOFTMAX).nIn(10).nOut(5).build()) .setInputType(InputType.convolutional(28, 28, 1)) .build(); int nParams = mls.numParameters(); List<ParameterSpace> l = LeafUtils.getUniqueObjects(mls.collectLeaves()); int x=0; for( ParameterSpace p : l){ int n = p.numParameters(); int[] arr = new int[n]; for(int i=0; i<arr.length; i++ ){ arr[i] = x++; } p.setIndices(arr); } MultiLayerConfiguration conf = mls.getValue(new double[nParams]).getMultiLayerConfiguration(); }
Example 4
Source File: TestMultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testDropout2(){ MultiLayerSpace mls = new MultiLayerSpace.Builder().updater(new Sgd(0.005)).seed(12345) .addLayer(new ConvolutionLayerSpace.Builder().nOut(2) .dropOut(new ContinuousParameterSpace(0.4,0.6)) .build()) .addLayer(new DropoutLayerSpace.Builder().dropOut(new ContinuousParameterSpace(0.4,0.6)).build()) .addLayer(new OutputLayerSpace.Builder().activation(Activation.SOFTMAX).nIn(10).nOut(5).build()) .setInputType(InputType.convolutional(28, 28, 1)) .build(); int nParams = mls.numParameters(); List<ParameterSpace> l = LeafUtils.getUniqueObjects(mls.collectLeaves()); int x=0; for( ParameterSpace p : l){ int n = p.numParameters(); int[] arr = new int[n]; for(int i=0; i<arr.length; i++ ){ arr[i] = x++; } p.setIndices(arr); } MultiLayerConfiguration conf = mls.getValue(new double[nParams]).getMultiLayerConfiguration(); }
Example 5
Source File: TestParameterSpaces.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testDiscreteParameterSpace() { ParameterSpace<Integer> dps = new DiscreteParameterSpace<>(0, 1, 2, 3, 4); dps.setIndices(0); for (int i = 0; i < 5; i++) { double d = i / 5.0 + 0.1; //Center double dEdgeLower = i / 5.0 + 1e-8; //Edge case: just above split threshold double dEdgeUpper = (i + 1) / 5.0 - 1e-8; //Edge case: just below split threshold assertEquals(i, (int) dps.getValue(new double[]{d})); assertEquals(i, (int) dps.getValue(new double[]{dEdgeLower})); assertEquals(i, (int) dps.getValue(new double[]{dEdgeUpper})); } }
Example 6
Source File: TestParameterSpaces.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testIntegerParameterSpace() { ParameterSpace<Integer> ips = new IntegerParameterSpace(0, 4); ips.setIndices(0); for (int i = 0; i < 5; i++) { double d = i / 5.0 + 0.1; //Center double dEdgeLower = i / 5.0 + 1e-8; //Edge case: just above split threshold double dEdgeUpper = (i + 1) / 5.0 - 1e-8; //Edge case: just below split threshold assertEquals(i, (int) ips.getValue(new double[]{d})); assertEquals(i, (int) ips.getValue(new double[]{dEdgeLower})); assertEquals(i, (int) ips.getValue(new double[]{dEdgeUpper})); } }
Example 7
Source File: TestParameterSpaces.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testBooleanSpace() { ParameterSpace<Boolean> bSpace = new BooleanSpace(); bSpace.setIndices(1); //randomly setting to non zero assertEquals(true, (boolean) bSpace.getValue(new double[]{0.0, 0.0})); assertEquals(true, (boolean) bSpace.getValue(new double[]{0.1, 0.5})); assertEquals(false, (boolean) bSpace.getValue(new double[]{0.2, 0.7})); assertEquals(false, (boolean) bSpace.getValue(new double[]{0.3, 1.0})); }
Example 8
Source File: TestMultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testBasic0() { MultiLayerConfiguration expected = new NeuralNetConfiguration.Builder() .l1Bias(0.4) .l2Bias(0.5) .constrainBias(new NonNegativeConstraint()) .updater(new Sgd(0.005)).seed(12345).list() .layer(0, new DenseLayer.Builder().l1Bias(0.6).nIn(10).nOut(10).build()) .layer(1, new DenseLayer.Builder().l2Bias(0.7).constrainBias(new UnitNormConstraint()).nIn(10).nOut(10).build()).layer(2, new OutputLayer.Builder().lossFunction(LossFunction.MCXENT).activation(Activation.SOFTMAX) .nIn(10).nOut(5).build()) .build(); MultiLayerSpace mls = new MultiLayerSpace.Builder() .l1Bias(0.4) .l2Bias(0.5) .constrainBias(new NonNegativeConstraint()) .updater(new Sgd(0.005)).seed(12345) .addLayer(new DenseLayerSpace.Builder().l1Bias(new ContinuousParameterSpace(0,1)).nIn(10).nOut(10).build()) .addLayer(new DenseLayerSpace.Builder().l2Bias(0.7).constrainBias(new UnitNormConstraint()).nIn(10).nOut(10).build()) .addLayer(new OutputLayerSpace.Builder().lossFunction(LossFunction.MCXENT).activation(Activation.SOFTMAX) .nIn(10).nOut(5).build()) .build(); int nParams = mls.numParameters(); assertEquals(1, nParams); //Assign numbers to each leaf ParameterSpace object (normally done by candidate generator - manual here for testing) List<ParameterSpace> noDuplicatesList = LeafUtils.getUniqueObjects(mls.collectLeaves()); //Second: assign each a number int c = 0; for (ParameterSpace ps : noDuplicatesList) { int np = ps.numParameters(); if (np == 1) { ps.setIndices(c++); } else { int[] values = new int[np]; for (int j = 0; j < np; j++) values[c++] = j; ps.setIndices(values); } } MultiLayerConfiguration conf = mls.getValue(new double[] {0.6}).getMultiLayerConfiguration(); assertEquals(expected, conf); }
Example 9
Source File: TestMultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testVariationalAutoencoderLayerSpaceBasic() { MultiLayerSpace mls = new MultiLayerSpace.Builder() .updater(new Sgd(0.005)).seed( 12345) .addLayer(new VariationalAutoencoderLayerSpace.Builder() .nIn(new IntegerParameterSpace(50, 75)).nOut(200) .encoderLayerSizes(234, 567).decoderLayerSizes(123, 456) .reconstructionDistribution( new DiscreteParameterSpace<ReconstructionDistribution>( new GaussianReconstructionDistribution(), new BernoulliReconstructionDistribution())) .build()) .build(); int numParams = mls.numParameters(); //Assign numbers to each leaf ParameterSpace object (normally done by candidate generator - manual here for testing) List<ParameterSpace> noDuplicatesList = LeafUtils.getUniqueObjects(mls.collectLeaves()); //Second: assign each a number int c = 0; for (ParameterSpace ps : noDuplicatesList) { int np = ps.numParameters(); if (np == 1) { ps.setIndices(c++); } else { int[] values = new int[np]; for (int j = 0; j < np; j++) values[c++] = j; ps.setIndices(values); } } double[] zeros = new double[numParams]; DL4JConfiguration configuration = mls.getValue(zeros); MultiLayerConfiguration conf = configuration.getMultiLayerConfiguration(); assertEquals(1, conf.getConfs().size()); NeuralNetConfiguration nnc = conf.getConf(0); VariationalAutoencoder vae = (VariationalAutoencoder) nnc.getLayer(); assertEquals(50, vae.getNIn()); assertEquals(200, vae.getNOut()); assertArrayEquals(new int[] {234, 567}, vae.getEncoderLayerSizes()); assertArrayEquals(new int[] {123, 456}, vae.getDecoderLayerSizes()); assertTrue(vae.getOutputDistribution() instanceof GaussianReconstructionDistribution); double[] ones = new double[numParams]; for (int i = 0; i < ones.length; i++) ones[i] = 1.0; configuration = mls.getValue(ones); conf = configuration.getMultiLayerConfiguration(); assertEquals(1, conf.getConfs().size()); nnc = conf.getConf(0); vae = (VariationalAutoencoder) nnc.getLayer(); assertEquals(75, vae.getNIn()); assertEquals(200, vae.getNOut()); assertArrayEquals(new int[] {234, 567}, vae.getEncoderLayerSizes()); assertArrayEquals(new int[] {123, 456}, vae.getDecoderLayerSizes()); assertTrue(vae.getOutputDistribution() instanceof BernoulliReconstructionDistribution); }