Java Code Examples for org.nd4j.autodiff.samediff.SameDiff#setLossVariables()
The following examples show how to use
org.nd4j.autodiff.samediff.SameDiff#setLossVariables() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: ShapeOpValidation.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testGather2(){ SameDiff sd = SameDiff.create(); SDVariable input = sd.var("in", Nd4j.arange(6).castTo(DataType.FLOAT).reshape(2,3)); SDVariable indices = sd.constant("indices", Nd4j.createFromArray(0)); SDVariable gathered = sd.gather(input, indices, 1); SDVariable loss = gathered.std(true); sd.output((Map<String,INDArray>)null, gathered.name()); sd.setLossVariables(gathered.name()); String err = OpValidation.validate(new TestCase(sd) .gradCheckEpsilon(1e-3) .gradCheckMaxRelativeError(1e-4)); assertNull(err); }
Example 2
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testMaxPooling3dBasic() { int nIn = 3; int kH = 2; int kW = 2; int kD = 2; int mb = 3; int imgH = 5; int imgW = 5; int imgD = 5; SameDiff sd = SameDiff.create(); INDArray inArr = Nd4j.create(mb, nIn, imgD, imgH, imgW); SDVariable in = sd.var("in", inArr); Pooling3DConfig pooling3DConfig = Pooling3DConfig.builder() .kH(kH).kW(kW).kD(kD) .pH(0).pW(0).pD(0) .sH(1).sW(1).sD(1) .dH(1).dW(1).dD(1) .isSameMode(false) .build(); SDVariable out = sd.cnn().maxPooling3d(in, pooling3DConfig); out = sd.nn().tanh("loss", out).shape().rename("out"); sd.setLossVariables("loss"); // oH = (iH - (kH + (kH-1)*(dH-1)) + 2*pH)/sH + 1; INDArray outArr = Nd4j.createFromArray(mb, nIn, 4, 4, 4L); TestCase tc = new TestCase(sd).expectedOutput("out", outArr).gradientCheck(false); String err = OpValidation.validate(tc); assertNull(err); }
Example 3
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testConv1dBasic() { int nIn = 3; int nOut = 4; int k = 2; int mb = 3; int img = 28; SameDiff sd = SameDiff.create(); INDArray wArr = Nd4j.create(k, nIn, nOut); INDArray inArr = Nd4j.create(mb, nIn, img); SDVariable in = sd.var("in", inArr); SDVariable w = sd.var("W", wArr); SDVariable[] vars = new SDVariable[]{in, w}; Conv1DConfig conv1DConfig = Conv1DConfig.builder() .k(k).p(0).s(1) .paddingMode(PaddingMode.VALID) .build(); SDVariable out = sd.cnn().conv1d(in, w, conv1DConfig); out = sd.nn().tanh("loss", out).shape().rename("out"); sd.setLossVariables("loss"); //Expected output size: out = (in - k + 2*p)/s + 1 = (28-2+0)/1+1 = 27 INDArray outArr = Nd4j.createFromArray(mb, nOut, 27L); TestCase tc = new TestCase(sd).expectedOutput("out", outArr).gradientCheck(false); String err = OpValidation .validate(tc); assertNull(err); }
Example 4
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void GRUTestCase() { int bS = 5; int nIn = 4; int nOut = 6; int time = 2; SameDiff sd = SameDiff.create(); SDVariable in = sd.var("in", Nd4j.randn(DataType.DOUBLE, time, bS, nIn).muli(10)); SDVariable hLast = sd.var("cLast", Nd4j.zeros(DataType.DOUBLE, bS, nOut)); SDVariable Wx = sd.var("Wx", Nd4j.randn(DataType.DOUBLE, nIn, 3*nOut)); SDVariable Wh = sd.var("Wh", Nd4j.randn(DataType.DOUBLE, nOut, 3*nOut)); SDVariable biases = sd.var("bias", Nd4j.randn(DataType.DOUBLE, 3*nOut)); SDVariable out = new GRU(sd, in, hLast, Wx, Wh,biases).outputVariable(); long[] outShapes = new long[]{time,bS, nOut}; assertArrayEquals(new long[]{time,bS, nOut}, out.eval().shape()); sd.setLossVariables(out.std(true)); String err = OpValidation.validate(new TestCase(sd) .gradientCheck(true) ); assertNull(err); }
Example 5
Source File: ReductionOpValidation.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testSoftmaxCrossEntropyWithLogitsLoss() { OpValidationSuite.ignoreFailing(); SameDiff sameDiff = SameDiff.create(); INDArray labels = Nd4j.createFromArray(new double[]{ 0,1,1,0,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,1,0,1,0 }).reshape(2,3,4); INDArray logits = Nd4j.linspace(DataType.DOUBLE, 0.1, 0.1, 24).reshape(2,3,4); INDArray expected = Nd4j.createFromArray(new double[]{ 0.26328, 1.46328, 1.72656, 0. , 0.26328, 0. , 1.46328, 0.26328, 1.72656, 0. , 1.72656, 1.46328 }).reshape(3,4); SDVariable sdLogits = sameDiff.var("logits", logits); SDVariable sdLabels = sameDiff.var("labels", labels); SDVariable loss = sameDiff.math().abs(sdLogits); SDVariable output = new SoftmaxCrossEntropyWithLogitsLoss(sameDiff, sdLogits, sdLabels, 0).outputVariable(); sameDiff.setLossVariables(output); TestCase tc = new TestCase(sameDiff) .gradientCheck(true) .expectedOutput(output.name(), expected); String err = OpValidation.validate(tc); assertNull(err); }
Example 6
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testConv1dCausal() { Nd4j.getRandom().setSeed(12345); int nIn = 3; int nOut = 4; int mb = 2; for (int k : new int[]{2, 3}) { for (int sz : new int[]{3, 4, 5}) { for (int s : new int[]{1, 2}) { for (int d : new int[]{1, 2}) { for (boolean ncw : new boolean[]{true, false}) { SameDiff sd = SameDiff.create(); INDArray wArr = Nd4j.rand(DataType.DOUBLE, k, nIn, nOut); INDArray inArr = Nd4j.rand(DataType.DOUBLE, (ncw ? new long[]{mb, nIn, sz} : new long[]{mb, sz, nIn})); INDArray bArr = Nd4j.rand(DataType.DOUBLE, nOut); SDVariable in = sd.var("in", inArr); SDVariable w = sd.var("W", wArr); SDVariable b = sd.var("b", bArr); Conv1DConfig conv1DConfig = Conv1DConfig.builder() .dataFormat(ncw ? Conv1DConfig.NCW : Conv1DConfig.NWC) .k(k).p(0).s(s).d(d) .paddingMode(PaddingMode.CAUSAL) .build(); SDVariable out = sd.cnn().conv1d(in, w, b, conv1DConfig); SDVariable loss = sd.nn().tanh(out).std(true).rename("loss"); sd.setLossVariables("loss"); String name = "k=" + k + ", sz=" + sz + ", ncw=" + ncw; System.out.println(name); TestCase tc = new TestCase(sd).testName(name).gradientCheck(true); String err = OpValidation .validate(tc); assertNull(err); } } } } } }
Example 7
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testConv3dBasic() { int nIn = 3; int nOut = 4; int kH = 2; int kW = 2; int kD = 2; int mb = 3; int imgH = 5; int imgW = 5; int imgT = 5; SameDiff sd = SameDiff.create(); INDArray wArr = Nd4j.rand(new int[]{kD, kH, kW, nIn, nOut}); INDArray bArr = Nd4j.rand(1, nOut); INDArray inArr = Nd4j.rand(new int[]{mb, nIn, imgT, imgH, imgW}); SDVariable in = sd.var("in", inArr); SDVariable w = sd.var("W", wArr); SDVariable b = sd.var("b", bArr); Conv3DConfig conv3DConfig = Conv3DConfig.builder() .kH(kH).kW(kW).kD(kD) .sD(1).sH(1).sW(1) .dH(1).dW(1).dD(1) .isSameMode(true) .biasUsed(false) .dataFormat(Conv3DConfig.NCDHW) .build(); SDVariable out = sd.cnn().conv3d(in, w, b, conv3DConfig); out = sd.nn().tanh("loss", out).shape().rename("out"); sd.setLossVariables("loss"); //Expected output size, NOT same mode: out = (in - k)/d + 1 = (28-2+0)/1+1 = 27 //Expected output size, WITH same mode: out = in/stride INDArray outArr = Nd4j.createFromArray(mb, nOut, 5, 5, 5L); TestCase tc = new TestCase(sd).expectedOutput("out", outArr).gradientCheck(true); String err = OpValidation .validate(tc); assertNull(err); }
Example 8
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testDeConv3dBasic() { int nIn = 4; int nOut = 3; int kH = 2; int kW = 2; int kD = 2; int mb = 3; int imgH = 5; int imgW = 5; int imgT = 5; SameDiff sd = SameDiff.create(); INDArray inArr = Nd4j.rand(new long[]{mb, nIn, 5, 5, 5}); INDArray wArr = Nd4j.rand(kD, kH, kW, nOut, nIn); SDVariable in = sd.var("in", inArr); SDVariable w = sd.var("W", wArr); DeConv3DConfig conv3DConfig = DeConv3DConfig.builder() .kH(kH).kW(kW).kD(kD) .sD(1).sH(1).sW(1) .dH(1).dW(1).dD(1) .isSameMode(true) .dataFormat(DeConv3DConfig.NCDHW) .build(); SDVariable out = sd.cnn().deconv3d(in, w, conv3DConfig); out = sd.nn().tanh("loss", out).shape().rename("out"); sd.setLossVariables("loss"); //Expected conv3d size, NOT same mode: out = (in - k)/d + 1 = (28-2+0)/1+1 = 27 //Expected conv3d size, WITH same mode: out = in/stride // reversed this for deconv3d INDArray outArr = Nd4j.createFromArray(new long[]{mb, nOut, imgT, imgH, imgW}); TestCase tc = new TestCase(sd) .expectedOutput("out", outArr) .gradientCheck(true); String err = OpValidation.validate(tc); assertNull(err); }
Example 9
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void LSTMLayerTestCase1() { int bS = 5; int nIn = 3; int numUnits = 7; int sL = 3; //small just for test // notations: // bS - batch size, numExamples // sL - sequence length, number of time steps, timeLength // nIn - input size, inOutSize // TNS: shape [timeLength, numExamples, inOutSize] - sometimes referred to as "time major"<br> // NST: shape [numExamples, inOutSize, timeLength]<br> // NTS: shape [numExamples, timeLength, inOutSize]<br> // for bidirectional: // T2NS: 3 = [timeLength, 2, numExamples, inOutSize] (for ONNX) for (boolean useCLast : new boolean[]{false, true}) { for (boolean useYLast : new boolean[]{false, true}) { SameDiff sd = SameDiff.create(); SDVariable in = sd.var("in", Nd4j.randn(DataType.DOUBLE, bS, nIn, sL)); SDVariable cLast = useCLast ? sd.var("cLast", Nd4j.zeros(DataType.DOUBLE, bS, numUnits)) : null; SDVariable yLast = useYLast ? sd.var("yLast", Nd4j.zeros(DataType.DOUBLE, bS, numUnits)) : null; LSTMLayerConfig c = LSTMLayerConfig.builder() .lstmdataformat(LSTMDataFormat.NST) .directionMode(LSTMDirectionMode.FWD) .gateAct(LSTMActivations.SIGMOID) .cellAct(LSTMActivations.TANH) .outAct(LSTMActivations.TANH) .retFullSequence(true) .retLastC(true) .retLastH(true) .build(); LSTMLayerOutputs outputs = new LSTMLayerOutputs(sd.rnn.lstmLayer( in, cLast, yLast, null, LSTMLayerWeights.builder() .weights(sd.var("weights", Nd4j.randn(DataType.DOUBLE, nIn, 4 * numUnits))) .rWeights(sd.var("rWeights", Nd4j.randn(DataType.DOUBLE, numUnits, 4 * numUnits))) .peepholeWeights(sd.var("inputPeepholeWeights", Nd4j.randn(DataType.DOUBLE, 3 * numUnits))) .bias(sd.var("bias", Nd4j.rand(DataType.DOUBLE, 4 * numUnits))).build(), c), c); long[] out = new long[]{bS, numUnits, sL}; long[] hL = new long[]{bS, numUnits}; long[] cL = new long[]{bS, numUnits}; assertArrayEquals(out, outputs.getOutput().eval().shape()); assertArrayEquals(hL, outputs.getLastOutput().eval().shape()); assertArrayEquals(cL, outputs.getLastState().eval().shape()); sd.setLossVariables(outputs.getOutput(), outputs.getLastTimeStepOutput(), outputs.getTimeSeriesOutput()); String err = OpValidation.validate(new TestCase(sd) .gradientCheck(true) .testName("cLast=" + cLast + ", yLast=" + yLast) ); assertNull(err); } } }
Example 10
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void LSTMLayerTestCase2() { int bS = 5; int nIn = 3; int numUnits = 7; int sL = 3; //small just for test SameDiff sd = SameDiff.create(); // notations: // bS - batch size, numExamples // sL - sequence length, number of time steps, timeLength // nIn - input size, inOutSize // TNS: shape [timeLength, numExamples, inOutSize] - sometimes referred to as "time major"<br> // NST: shape [numExamples, inOutSize, timeLength]<br> // NTS: shape [numExamples, timeLength, inOutSize]<br> // for bidirectional: // T2NS: 3 = [timeLength, 2, numExamples, inOutSize] (for ONNX) SDVariable in = sd.var("in", Nd4j.rand(DataType.DOUBLE, sL, bS, nIn)); SDVariable cLast = sd.var("cLast", Nd4j.zeros(DataType.DOUBLE, bS, numUnits)); SDVariable yLast = sd.var("yLast", Nd4j.zeros(DataType.DOUBLE, bS, numUnits)); LSTMLayerConfig c = LSTMLayerConfig.builder() .lstmdataformat(LSTMDataFormat.TNS) .directionMode(LSTMDirectionMode.FWD) .gateAct(LSTMActivations.SIGMOID) .cellAct(LSTMActivations.TANH) .outAct(LSTMActivations.TANH) .retFullSequence(true) .retLastC(false) .retLastH(false) .build(); LSTMLayerOutputs outputs = new LSTMLayerOutputs(sd.rnn.lstmLayer( in, cLast, yLast, null, LSTMLayerWeights.builder() .weights(sd.var("weights", Nd4j.rand(DataType.DOUBLE, nIn, 4 * numUnits))) .rWeights(sd.var("rWeights", Nd4j.rand(DataType.DOUBLE, numUnits, 4 * numUnits))) .build(), c), c); long[] out = new long[]{sL, bS, numUnits}; assertArrayEquals(out, outputs.getOutput().eval().shape()); sd.setLossVariables(outputs.getOutput()); String err = OpValidation.validate(new TestCase(sd) .gradientCheck(true) ); assertNull(err); }
Example 11
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void LSTMLayerTestCase3() { int bS = 5; int nIn = 3; int numUnits = 7; int sL = 3; //small just for test SameDiff sd = SameDiff.create(); // notations: // bS - batch size, numExamples // sL - sequence length, number of time steps, timeLength // nIn - input size, inOutSize // TNS: shape [timeLength, numExamples, inOutSize] - sometimes referred to as "time major"<br> // NST: shape [numExamples, inOutSize, timeLength]<br> // NTS: shape [numExamples, timeLength, inOutSize]<br> // for bidirectional: // T2NS: 3 = [timeLength, 2, numExamples, inOutSize] (for ONNX) SDVariable in = sd.var("in", Nd4j.rand(DataType.DOUBLE, bS, sL, nIn)); // when directionMode >= 2 (BIDIR_CONCAT=3) // Wx, Wr [2, nIn, 4*nOut] // hI, cI [2, bS, nOut] SDVariable cLast = sd.var("cLast", Nd4j.zeros(DataType.DOUBLE, 2, bS, numUnits)); SDVariable yLast = sd.var("yLast", Nd4j.zeros(DataType.DOUBLE, 2, bS, numUnits)); LSTMLayerConfig c = LSTMLayerConfig.builder() .lstmdataformat(LSTMDataFormat.NTS) .directionMode(LSTMDirectionMode.BIDIR_CONCAT) .gateAct(LSTMActivations.SIGMOID) .cellAct(LSTMActivations.SOFTPLUS) .outAct(LSTMActivations.SOFTPLUS) .retFullSequence(true) .retLastC(false) .retLastH(false) .build(); LSTMLayerOutputs outputs = new LSTMLayerOutputs(sd.rnn.lstmLayer(new String[]{"out"}, in, cLast, yLast, null, LSTMLayerWeights.builder() .weights(sd.var("weights", Nd4j.rand(DataType.DOUBLE, 2, nIn, 4 * numUnits))) .rWeights(sd.var("rWeights", Nd4j.rand(DataType.DOUBLE, 2, numUnits, 4 * numUnits))) .build(), c), c); long[] out = new long[]{bS, sL, 2 * numUnits}; assertArrayEquals(out, outputs.getOutput().eval().shape()); sd.setLossVariables(outputs.getOutput()); String err = OpValidation.validate(new TestCase(sd) .gradientCheck(true) ); assertNull(err); }