Java Code Examples for org.nd4j.linalg.api.ndarray.INDArray#max()
The following examples show how to use
org.nd4j.linalg.api.ndarray.INDArray#max() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: GlobalPoolingLayer.java From deeplearning4j with Apache License 2.0 | 6 votes |
private INDArray activateHelperFullArray(INDArray inputArray, int[] poolDim) { switch (poolingType) { case MAX: return inputArray.max(poolDim); case AVG: return inputArray.mean(poolDim); case SUM: return inputArray.sum(poolDim); case PNORM: //P norm: https://arxiv.org/pdf/1311.1780.pdf //out = (1/N * sum( |in| ^ p) ) ^ (1/p) int pnorm = layerConf().getPnorm(); INDArray abs = Transforms.abs(inputArray, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = abs.sum(poolDim); return Transforms.pow(pNorm, 1.0 / pnorm, false); default: throw new RuntimeException("Unknown or not supported pooling type: " + poolingType + " " + layerId()); } }
Example 2
Source File: SpTree.java From deeplearning4j with Apache License 2.0 | 6 votes |
public SpTree(INDArray data, Collection<INDArray> indices, String similarityFunction) { this.indices = indices; this.N = data.rows(); this.D = data.columns(); this.similarityFunction = similarityFunction; data = data.dup(); INDArray meanY = data.mean(0); INDArray minY = data.min(0); INDArray maxY = data.max(0); INDArray width = Nd4j.create(data.dataType(), meanY.shape()); for (int i = 0; i < width.length(); i++) { width.putScalar(i, Math.max(maxY.getDouble(i) - meanY.getDouble(i), meanY.getDouble(i) - minY.getDouble(i)) + Nd4j.EPS_THRESHOLD); } try(MemoryWorkspace ws = Nd4j.getMemoryManager().scopeOutOfWorkspaces()) { init(null, data, meanY, width, indices, similarityFunction); fill(N); } }
Example 3
Source File: PreProcessor3D4DTest.java From nd4j with Apache License 2.0 | 6 votes |
public Construct4dDataSet(int nExamples, int nChannels, int height, int width) { INDArray allImages = Nd4j.rand(new int[] {nExamples, nChannels, height, width}); allImages.get(NDArrayIndex.all(), NDArrayIndex.point(1), NDArrayIndex.all(), NDArrayIndex.all()).muli(100) .addi(200); allImages.get(NDArrayIndex.all(), NDArrayIndex.point(2), NDArrayIndex.all(), NDArrayIndex.all()).muli(0.001) .subi(10); INDArray labels = Nd4j.linspace(1, nChannels, nChannels).reshape(nChannels, 1); sampleDataSet = new DataSet(allImages, labels); expectedMean = allImages.mean(0, 2, 3); expectedStd = allImages.std(0, 2, 3); expectedLabelMean = labels.mean(0); expectedLabelStd = labels.std(0); expectedMin = allImages.min(0, 2, 3); expectedMax = allImages.max(0, 2, 3); }
Example 4
Source File: QuadTree.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * Pass in a matrix * @param data */ public QuadTree(INDArray data) { INDArray meanY = data.mean(0); INDArray minY = data.min(0); INDArray maxY = data.max(0); init(data, meanY.getDouble(0), meanY.getDouble(1), max(maxY.getDouble(0) - meanY.getDouble(0), meanY.getDouble(0) - minY.getDouble(0)) + Nd4j.EPS_THRESHOLD, max(maxY.getDouble(1) - meanY.getDouble(1), meanY.getDouble(1) - minY.getDouble(1)) + Nd4j.EPS_THRESHOLD); fill(); }
Example 5
Source File: FeatureUtil.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * Scales the ndarray columns * to the given min/max values * * @param min the minimum number * @param max the max number */ public static void scaleMinMax(double min, double max, INDArray toScale) { //X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min INDArray min2 = toScale.min(0); INDArray max2 = toScale.max(0); INDArray std = toScale.subRowVector(min2).diviRowVector(max2.sub(min2)); INDArray scaled = std.mul(max - min).addi(min); toScale.assign(scaled); }
Example 6
Source File: FeatureUtil.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * Divides each row by its max * * @param toScale the matrix to divide by its row maxes */ public static void scaleByMax(INDArray toScale) { INDArray scale = toScale.max(1); for (int i = 0; i < toScale.rows(); i++) { double scaleBy = scale.getDouble(i); toScale.putRow(i, toScale.getRow(i).divi(scaleBy)); } }
Example 7
Source File: FeatureUtil.java From nd4j with Apache License 2.0 | 5 votes |
/** * Scales the ndarray columns * to the given min/max values * * @param min the minimum number * @param max the max number */ public static void scaleMinMax(double min, double max, INDArray toScale) { //X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min INDArray min2 = toScale.min(0); INDArray max2 = toScale.max(0); INDArray std = toScale.subRowVector(min2).diviRowVector(max2.sub(min2)); INDArray scaled = std.mul(max - min).addi(min); toScale.assign(scaled); }
Example 8
Source File: FeatureUtil.java From nd4j with Apache License 2.0 | 5 votes |
/** * Divides each row by its max * * @param toScale the matrix to divide by its row maxes */ public static void scaleByMax(INDArray toScale) { INDArray scale = toScale.max(1); for (int i = 0; i < toScale.rows(); i++) { double scaleBy = scale.getDouble(i); toScale.putRow(i, toScale.getRow(i).divi(scaleBy)); } }
Example 9
Source File: MinMaxStats.java From nd4j with Apache License 2.0 | 5 votes |
/** * Add rows of data to the statistics * * @param data the matrix containing multiple rows of data to include * @param mask (optionally) the mask of the data, useful for e.g. time series */ public MinMaxStats.Builder add(@NonNull INDArray data, INDArray mask) { data = DataSetUtil.tailor2d(data, mask); if (data == null) { // Nothing to add. Either data is empty or completely masked. Just skip it, otherwise we will get // null pointer exceptions. return this; } INDArray tad = data.javaTensorAlongDimension(0, 0); INDArray batchMin = data.min(0); INDArray batchMax = data.max(0); if (!Arrays.equals(batchMin.shape(), batchMax.shape())) throw new IllegalStateException( "Data min and max must be same shape. Likely a bug in the operation changing the input?"); if (runningLower == null) { // First batch // Create copies because min and max are views to the same data set, which will cause problems with the // side effects of Transforms.min and Transforms.max runningLower = batchMin.dup(); runningUpper = batchMax.dup(); } else { // Update running bounds Transforms.min(runningLower, batchMin, false); Transforms.max(runningUpper, batchMax, false); } return this; }
Example 10
Source File: ConvolutionTestsC.java From nd4j with Apache License 2.0 | 4 votes |
@Test public void testPooling2D_Same() { int[] miniBatches = {1, 3, 5}; int[] depths = {1, 3, 5}; int[] inHeights = {5, 21}; int[] inWidths = {5, 21}; int[] strideH = {1, 2}; int[] strideW = {1, 2}; int[] sizeW = {1, 2, 3}; int[] sizeH = {1, 2, 3}; int[] padH = {0}; int[] padW = {0}; Pooling2D.Pooling2DType[] types = new Pooling2D.Pooling2DType[]{Pooling2D.Pooling2DType.AVG, Pooling2D.Pooling2DType.PNORM, Pooling2D.Pooling2DType.MAX,}; int cnt = 0; for (Pooling2D.Pooling2DType type : types) { log.info("Trying pooling type: [{}]", type); for (int m : miniBatches) { for (int d : depths) { for (int h : inHeights) { for (int w : inWidths) { for (int sh : strideH) { for (int sw : strideW) { for (int kh : sizeH) { for (int kw : sizeW) { INDArray in = Nd4j.rand(new int[]{m, d, h, w}); int[] outSize = getOutputSize(in, new int[]{kh, kw}, new int[]{sh, sw}, null, true); //Calculate padding for same mode: int pHTotal = (outSize[0]-1)*sh + kh - h; int pWTotal = (outSize[1]-1)*sw + kw - w; int padTop = pHTotal / 2; int padLeft = pWTotal / 2; INDArray col = Nd4j.create(new int[]{m, d, outSize[0], outSize[1], kh, kw}, 'c'); INDArray col2 = col.permute(0, 1, 4, 5, 2, 3); //INDArray col = Nd4j.createUninitialized(new int[]{m, d, kh, kw, outSize[0], outSize[1]}, 'c'); //INDArray col2 = col; Convolution.im2col(in, kh, kw, sh, sw, padTop, padLeft, true, col2); INDArray col2d = col.reshape('c', m * d * outSize[0] * outSize[1], kh * kw); INDArray output = Nd4j.create(m, d, outSize[0], outSize[1]); INDArray reduced = null; switch (type) { case PNORM: int pnorm = 3; Transforms.abs(col2d, false); Transforms.pow(col2d, pnorm, false); reduced = col2d.sum(1); Transforms.pow(reduced, (1.0 / pnorm), false); Convolution.pooling2D(in, kh, kw, sh, sw, padTop, padLeft, 1, 1, true, Pooling2D.Pooling2DType.PNORM, Pooling2D.Divisor.INCLUDE_PADDING, (double) pnorm, outSize[0], outSize[1], output); break; case MAX: Convolution.pooling2D(in, kh, kw, sh, sw, padTop, padLeft, 1, 1, true, Pooling2D.Pooling2DType.MAX, Pooling2D.Divisor.INCLUDE_PADDING, 0.0, outSize[0], outSize[1], output); reduced = col2d.max(1); break; case AVG: Convolution.pooling2D(in, kh, kw, sh, sw, padTop, padLeft, 1, 1, true, Pooling2D.Pooling2DType.AVG, Pooling2D.Divisor.INCLUDE_PADDING, 0.0, outSize[0], outSize[1], output); reduced = col2d.mean(1); break; } reduced = reduced.reshape('c',m,d, outSize[0], outSize[1]); assertEquals("Failed opType: " + type, reduced, output); } } } } } } } } } }
Example 11
Source File: LossMixtureDensity.java From nd4j with Apache License 2.0 | 4 votes |
/** * This method returns the gradient of the cost function with respect to the * output from the previous layer. For this cost function, the gradient * is derived from Bishop's paper "Mixture Density Networks" (1994) which * gives an elegant closed-form expression for the derivatives with respect * to each of the output components. * @param labels Labels to train on. * @param preOutput Output of neural network before applying the final activation function. * @param activationFn Activation function of output layer. * @param mask Mask to apply to gradients. * @return Gradient of cost function with respect to preOutput parameters. */ @Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { long nSamples = labels.size(0); INDArray output = activationFn.getActivation(preOutput.dup(), false); MixtureDensityComponents mdc = extractComponents(output); INDArray gradient = Nd4j.zeros(nSamples, preOutput.columns()); INDArray labelsMinusMu = labelsMinusMu(labels, mdc.mu); INDArray labelsMinusMuSquared = labelsMinusMu.mul(labelsMinusMu).sum(2); // This computes pi_i, see Bishop equation (30). // See http://www.plsyard.com/dealing-overflow-and-underflow-in-softmax-function/ // this post for why we calculate the pi_i in this way. // With the exponential function here, we have to be very careful // about overflow/underflow considerations even with // fairly intermediate values. Subtracting the max // here helps to ensure over/underflow does not happen here. // This isn't exactly a softmax because there's an 'alpha' coefficient // here, but the technique works, nonetheless. INDArray variance = mdc.sigma.mul(mdc.sigma); INDArray minustwovariance = variance.mul(2).negi(); INDArray normalPart = mdc.alpha.div(Transforms.pow(mdc.sigma.mul(SQRT_TWO_PI), mLabelWidth)); INDArray exponent = labelsMinusMuSquared.div(minustwovariance); INDArray exponentMax = exponent.max(1); exponent.subiColumnVector(exponentMax); INDArray pi = Transforms.exp(exponent).muli(normalPart); INDArray piDivisor = pi.sum(1); pi.diviColumnVector(piDivisor); // See Bishop equation (35) //INDArray dLdZAlpha = Nd4j.zeros(nSamples, nLabelsPerSample, mMixturesPerLabel); //mdc.alpha.sub(pi); INDArray dLdZAlpha = mdc.alpha.sub(pi); // See Bishop equation (38) INDArray dLdZSigma = (labelsMinusMuSquared.div(variance).subi(mLabelWidth)).muli(-1).muli(pi); // See Bishop equation (39) // This turned out to be way less efficient than // the simple 'for' loop here. //INDArray dLdZMu = pi // .div(variance) // .reshape(nSamples, mMixtures, 1) // .repeat(2, mLabelWidth) // .muli(labelsMinusMu) // .negi() // .reshape(nSamples, mMixtures * mLabelWidth); INDArray dLdZMu = Nd4j.create(nSamples, mMixtures, mLabelWidth); for (int k = 0; k < mLabelWidth; k++) { dLdZMu.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(k)}, labelsMinusMu.get(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(k)}).muli(pi).divi(variance).negi()); } dLdZMu = dLdZMu.reshape(nSamples, mMixtures * mLabelWidth); // Place components of gradient into gradient holder. gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(0, mMixtures)}, dLdZAlpha); gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(mMixtures, mMixtures * 2)}, dLdZSigma); gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(mMixtures * 2, (mLabelWidth + 2) * mMixtures)}, dLdZMu); INDArray gradients = activationFn.backprop(preOutput, gradient).getFirst(); if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 12
Source File: OpExecutionerTestsC.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testNorm2_1() { INDArray array = Nd4j.rand(1769472, 9); INDArray max = array.max(1); }
Example 13
Source File: ConvolutionTestsC.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testPooling2D_Same() { int[] miniBatches = {1, 3, 5}; int[] depths = {1, 3, 5}; int[] inHeights = {5, 21}; int[] inWidths = {5, 21}; int[] strideH = {1, 2}; int[] strideW = {1, 2}; int[] sizeW = {1, 2, 3}; int[] sizeH = {1, 2, 3}; int[] padH = {0}; int[] padW = {0}; Pooling2D.Pooling2DType[] types = new Pooling2D.Pooling2DType[]{Pooling2D.Pooling2DType.PNORM, Pooling2D.Pooling2DType.AVG, Pooling2D.Pooling2DType.MAX}; int cnt = 0; for (Pooling2D.Pooling2DType type : types) { log.info("Trying pooling type: [{}]", type); for (int m : miniBatches) { for (int d : depths) { for (int h : inHeights) { for (int w : inWidths) { for (int sh : strideH) { for (int sw : strideW) { for (int kh : sizeH) { for (int kw : sizeW) { INDArray in = Nd4j.linspace(1, (m * d * h * w), (m * d * h * w), Nd4j.defaultFloatingPointType()).reshape(new int[]{m, d, h, w}); int[] outSize = getOutputSize(in, new int[]{kh, kw}, new int[]{sh, sw}, null, true); //Calculate padding for same mode: int pHTotal = (outSize[0]-1)*sh + kh - h; int pWTotal = (outSize[1]-1)*sw + kw - w; int padTop = pHTotal / 2; int padLeft = pWTotal / 2; INDArray col = Nd4j.create(new int[]{m, d, outSize[0], outSize[1], kh, kw}, 'c'); INDArray col2 = col.permute(0, 1, 4, 5, 2, 3); //INDArray col = Nd4j.createUninitialized(new int[]{m, d, kH, kW, outSize[0], outSize[1]}, 'c'); //INDArray col2 = col; Convolution.im2col(in, kh, kw, sh, sw, padTop, padLeft, true, col2); INDArray col2d = col.reshape('c', m * d * outSize[0] * outSize[1], kh * kw); INDArray output = Nd4j.create(m, d, outSize[0], outSize[1]); INDArray reduced = null; switch (type) { case PNORM: int pnorm = 3; Transforms.abs(col2d, false); Transforms.pow(col2d, pnorm, false); reduced = col2d.sum(1); Transforms.pow(reduced, (1.0 / pnorm), false); Convolution.pooling2D(in, kh, kw, sh, sw, padTop, padLeft, 1, 1, true, Pooling2D.Pooling2DType.PNORM, Pooling2D.Divisor.INCLUDE_PADDING, (double) pnorm, outSize[0], outSize[1], output); break; case MAX: Convolution.pooling2D(in, kh, kw, sh, sw, padTop, padLeft, 1, 1, true, Pooling2D.Pooling2DType.MAX, Pooling2D.Divisor.INCLUDE_PADDING, 0.0, outSize[0], outSize[1], output); reduced = col2d.max(1); break; case AVG: Convolution.pooling2D(in, kh, kw, sh, sw, padTop, padLeft, 1, 1, true, Pooling2D.Pooling2DType.AVG, Pooling2D.Divisor.INCLUDE_PADDING, 0.0, outSize[0], outSize[1], output); reduced = col2d.mean(1); break; } reduced = reduced.reshape('c',m,d, outSize[0], outSize[1]).dup('c'); assertEquals("Failed opType: " + type, reduced, output); } } } } } } } } } }
Example 14
Source File: MaskedReductionUtil.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static INDArray maskedPoolingConvolution(PoolingType poolingType, INDArray toReduce, INDArray mask, int pnorm, DataType dataType) { if(mask.rank() != 4){ //TODO BETTER ERROR MESSAGE EXPLAINING FORMAT //TODO ALSO HANDLE LEGACY FORMAT WITH WARNING WHERE POSSIBLE throw new IllegalStateException("Expected rank 4 mask array: Got array with shape " + Arrays.toString(mask.shape())); } mask = mask.castTo(dataType); //no-op if already correct dtype // [minibatch, channels, h, w] data with a mask array of shape [minibatch, 1, X, Y] // where X=(1 or inH) and Y=(1 or inW) //General case: must be equal or 1 on each dimension int[] dimensions = new int[4]; int count = 0; for(int i=0; i<4; i++ ){ if(toReduce.size(i) == mask.size(i)){ dimensions[count++] = i; } } if(count < 4){ dimensions = Arrays.copyOfRange(dimensions, 0, count); } switch (poolingType) { case MAX: //TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op INDArray negInfMask; if(mask.dataType() == DataType.BOOL){ negInfMask = Transforms.not(mask).castTo(dataType); } else { negInfMask = mask.rsub(1.0); } BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0)); INDArray withInf = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, dimensions)); //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op return withInf.max(2, 3); case AVG: case SUM: INDArray masked = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, dimensions)); INDArray summed = masked.sum(2, 3); if (poolingType == PoolingType.SUM) { return summed; } INDArray maskCounts = mask.sum(1,2,3); summed.diviColumnVector(maskCounts); return summed; case PNORM: //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0 INDArray masked2 = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, dimensions)); INDArray abs = Transforms.abs(masked2, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = abs.sum(2, 3); return Transforms.pow(pNorm, 1.0 / pnorm); default: throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType); } }
Example 15
Source File: OpExecutionerTestsC.java From nd4j with Apache License 2.0 | 4 votes |
@Test public void testNorm2_1() throws Exception { INDArray array = Nd4j.rand(1769472, 9); INDArray max = array.max(1); }
Example 16
Source File: CudaAccumTests.java From nd4j with Apache License 2.0 | 4 votes |
@Test public void testMax0() throws Exception { INDArray array1 = Nd4j.linspace(1, 76800,76800).reshape(256, 300); long time1 = System.currentTimeMillis(); INDArray array = array1.max(0); long time2 = System.currentTimeMillis(); System.out.println("Array1 shapeInfo: " + array1.shapeInfoDataBuffer()); System.out.println("Result shapeInfo: " + array.shapeInfoDataBuffer()); System.out.println("Time elapsed: "+ (time2 - time1) ); assertEquals(300, array.length()); for (int x = 0; x < 300; x++) { assertEquals("Failed on x: " + x, 76800 - (array1.columns() - x) + 1 , array.getFloat(x), 0.01f); } }
Example 17
Source File: LossMixtureDensity.java From deeplearning4j with Apache License 2.0 | 4 votes |
/** * This method returns the gradient of the cost function with respect to the * output from the previous layer. For this cost function, the gradient * is derived from Bishop's paper "Mixture Density Networks" (1994) which * gives an elegant closed-form expression for the derivatives with respect * to each of the output components. * @param labels Labels to train on. * @param preOutput Output of neural network before applying the final activation function. * @param activationFn Activation function of output layer. * @param mask Mask to apply to gradients. * @return Gradient of cost function with respect to preOutput parameters. */ @Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype long nSamples = labels.size(0); INDArray output = activationFn.getActivation(preOutput.dup(), false); MixtureDensityComponents mdc = extractComponents(output); INDArray gradient = Nd4j.zeros(nSamples, preOutput.columns()); INDArray labelsMinusMu = labelsMinusMu(labels, mdc.mu); INDArray labelsMinusMuSquared = labelsMinusMu.mul(labelsMinusMu).sum(2); // This computes pi_i, see Bishop equation (30). // See http://www.plsyard.com/dealing-overflow-and-underflow-in-softmax-function/ // this post for why we calculate the pi_i in this way. // With the exponential function here, we have to be very careful // about overflow/underflow considerations even with // fairly intermediate values. Subtracting the max // here helps to ensure over/underflow does not happen here. // This isn't exactly a softmax because there's an 'alpha' coefficient // here, but the technique works, nonetheless. INDArray variance = mdc.sigma.mul(mdc.sigma); INDArray minustwovariance = variance.mul(2).negi(); INDArray normalPart = mdc.alpha.div(Transforms.pow(mdc.sigma.mul(SQRT_TWO_PI), mLabelWidth)); INDArray exponent = labelsMinusMuSquared.div(minustwovariance); INDArray exponentMax = exponent.max(1); exponent.subiColumnVector(exponentMax); INDArray pi = Transforms.exp(exponent).muli(normalPart); INDArray piDivisor = pi.sum(true,1); pi.diviColumnVector(piDivisor); // See Bishop equation (35) //INDArray dLdZAlpha = Nd4j.zeros(nSamples, nLabelsPerSample, mMixturesPerLabel); //mdc.alpha.sub(pi); INDArray dLdZAlpha = mdc.alpha.sub(pi); // See Bishop equation (38) INDArray dLdZSigma = (labelsMinusMuSquared.div(variance).subi(mLabelWidth)).muli(-1).muli(pi); // See Bishop equation (39) // This turned out to be way less efficient than // the simple 'for' loop here. //INDArray dLdZMu = pi // .div(variance) // .reshape(nSamples, mMixtures, 1) // .repeat(2, mLabelWidth) // .muli(labelsMinusMu) // .negi() // .reshape(nSamples, mMixtures * mLabelWidth); INDArray dLdZMu = Nd4j.create(nSamples, mMixtures, mLabelWidth); for (int k = 0; k < mLabelWidth; k++) { dLdZMu.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(k)}, labelsMinusMu.get(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(k)}).muli(pi).divi(variance).negi()); } dLdZMu = dLdZMu.reshape(nSamples, mMixtures * mLabelWidth); // Place components of gradient into gradient holder. gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(0, mMixtures)}, dLdZAlpha); gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(mMixtures, mMixtures * 2)}, dLdZSigma); gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(mMixtures * 2, (mLabelWidth + 2) * mMixtures)}, dLdZMu); INDArray gradients = activationFn.backprop(preOutput, gradient).getFirst(); if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 18
Source File: DeepGL.java From ml-models with Apache License 2.0 | 4 votes |
@Override public INDArray op(INDArray neighbourhoodFeatures, INDArray nodeFeature) { return neighbourhoodFeatures.max(0); }
Example 19
Source File: MaskedReductionUtil.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static INDArray maskedPoolingTimeSeries(PoolingType poolingType, INDArray toReduce, INDArray mask, int pnorm, DataType dataType) { if (toReduce.rank() != 3) { throw new IllegalArgumentException("Expect rank 3 array: got " + toReduce.rank()); } if (mask.rank() != 2) { throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank()); } toReduce = toReduce.castTo(dataType); mask = mask.castTo(dataType); //Sum pooling: easy. Multiply by mask, then sum as normal //Average pooling: as above, but do a broadcast element-wise divi by mask.sum(1) //Max pooling: set to -inf if mask is 0, then do max as normal switch (poolingType) { case MAX: INDArray negInfMask = mask.castTo(dataType).rsub(1.0); BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0)); INDArray withInf = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, 0, 2)); //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op return withInf.max(2); case AVG: case SUM: INDArray masked = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, 0, 2)); INDArray summed = masked.sum(2); if (poolingType == PoolingType.SUM) { return summed; } INDArray maskCounts = mask.sum(1); summed.diviColumnVector(maskCounts); return summed; case PNORM: //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0 INDArray masked2 = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, 0, 2)); INDArray abs = Transforms.abs(masked2, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = abs.sum(2); return Transforms.pow(pNorm, 1.0 / pnorm); default: throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType); } }
Example 20
Source File: CrashTest.java From nd4j with Apache License 2.0 | 2 votes |
protected void op(INDArray x, INDArray y, int i) { // broadcast along row & column INDArray row = Nd4j.ones(64); INDArray column = Nd4j.ones(1024, 1); x.addiRowVector(row); x.addiColumnVector(column); // casual scalar x.addi(i * 2); // reduction along all dimensions float sum = x.sumNumber().floatValue(); // index reduction Nd4j.getExecutioner().exec(new IMax(x), Integer.MAX_VALUE); // casual transform Nd4j.getExecutioner().exec(new Sqrt(x, x)); // dup INDArray x1 = x.dup(x.ordering()); INDArray x2 = x.dup(x.ordering()); INDArray x3 = x.dup('c'); INDArray x4 = x.dup('f'); // vstack && hstack INDArray vstack = Nd4j.vstack(x, x1, x2, x3, x4); INDArray hstack = Nd4j.hstack(x, x1, x2, x3, x4); // reduce3 call Nd4j.getExecutioner().exec(new ManhattanDistance(x, x2)); // flatten call INDArray flat = Nd4j.toFlattened(x, x1, x2, x3, x4); // reduction along dimension: row & column INDArray max_0 = x.max(0); INDArray max_1 = x.max(1); // index reduction along dimension: row & column INDArray imax_0 = Nd4j.argMax(x, 0); INDArray imax_1 = Nd4j.argMax(x, 1); // logisoftmax, softmax & softmax derivative Nd4j.getExecutioner().exec(new OldSoftMax(x)); Nd4j.getExecutioner().exec(new SoftMaxDerivative(x)); Nd4j.getExecutioner().exec(new LogSoftMax(x)); // BooleanIndexing BooleanIndexing.replaceWhere(x, 5f, Conditions.lessThan(8f)); // assing on view BooleanIndexing.assignIf(x, x1, Conditions.greaterThan(-1000000000f)); // std var along all dimensions float std = x.stdNumber().floatValue(); // std var along row & col INDArray xStd_0 = x.std(0); INDArray xStd_1 = x.std(1); // blas call float dot = (float) Nd4j.getBlasWrapper().dot(x, x1); // mmul for (boolean tA : paramsA) { for (boolean tB : paramsB) { INDArray xT = tA ? x.dup() : x.dup().transpose(); INDArray yT = tB ? y.dup() : y.dup().transpose(); Nd4j.gemm(xT, yT, tA, tB); } } // specially for views, checking here without dup and rollover Nd4j.gemm(x, y, false, false); log.debug("Iteration passed: " + i); }