Java Code Examples for org.nd4j.linalg.factory.Nd4j#getRandom()
The following examples show how to use
org.nd4j.linalg.factory.Nd4j#getRandom() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: A3CThreadDiscrete.java From deeplearning4j with Apache License 2.0 | 6 votes |
public A3CThreadDiscrete(MDP<OBSERVATION, Integer, DiscreteSpace> mdp, IAsyncGlobal<IActorCritic> asyncGlobal, A3CLearningConfiguration a3cc, int deviceNum, TrainingListenerList listeners, int threadNumber) { super(asyncGlobal, mdp, listeners, threadNumber, deviceNum); this.configuration = a3cc; this.asyncGlobal = asyncGlobal; this.threadNumber = threadNumber; Long seed = configuration.getSeed(); rnd = Nd4j.getRandom(); if (seed != null) { rnd.setSeed(seed + threadNumber); } setUpdateAlgorithm(buildUpdateAlgorithm()); }
Example 2
Source File: LargestBlobCropTransform.java From DataVec with Apache License 2.0 | 5 votes |
/** * * @param random Object to use (or null for deterministic) * @param mode Contour retrieval mode * @param method Contour approximation method * @param blurWidth Width of blurring kernel size * @param blurHeight Height of blurring kernel size * @param lowerThresh Lower threshold for either Canny or Threshold * @param upperThresh Upper threshold for either Canny or Threshold * @param isCanny Whether the edge detector is Canny or Threshold */ public LargestBlobCropTransform(Random random, int mode, int method, int blurWidth, int blurHeight, int lowerThresh, int upperThresh, boolean isCanny) { super(random); this.rng = Nd4j.getRandom(); this.mode = mode; this.method = method; this.blurWidth = blurWidth; this.blurHeight = blurHeight; this.lowerThresh = lowerThresh; this.upperThresh = upperThresh; this.isCanny = isCanny; this.converter = new OpenCVFrameConverter.ToMat(); }
Example 3
Source File: A3CDiscrete.java From deeplearning4j with Apache License 2.0 | 5 votes |
public A3CDiscrete(MDP<OBSERVATION, Integer, DiscreteSpace> mdp, IActorCritic iActorCritic, A3CLearningConfiguration conf) { this.iActorCritic = iActorCritic; this.mdp = mdp; this.configuration = conf; asyncGlobal = new AsyncGlobal<>(iActorCritic, conf); Long seed = conf.getSeed(); Random rnd = Nd4j.getRandom(); if (seed != null) { rnd.setSeed(seed); } policy = new ACPolicy<>(iActorCritic, rnd); }
Example 4
Source File: RandomTests.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testMultithreading2() throws Exception { final AtomicInteger cnt = new AtomicInteger(0); final CopyOnWriteArrayList<INDArray> list = new CopyOnWriteArrayList<>(); Thread[] threads = new Thread[10]; for (int x = 0; x < threads.length; x++) { list.add(null); } for (int x = 0; x < threads.length; x++) { threads[x] = new Thread(new Runnable() { @Override public void run() { Random rnd = Nd4j.getRandom(); rnd.setSeed(119); INDArray array = Nd4j.getExecutioner().exec(new UniformDistribution(Nd4j.createUninitialized(25))); Nd4j.getExecutioner().commit(); list.set(cnt.getAndIncrement(), array); } }); threads[x].start(); } for (int x = 0; x < threads.length; x++) { threads[x].join(); assertNotEquals(null, list.get(x)); if (x > 0) { assertEquals(list.get(0), list.get(x)); } } }
Example 5
Source File: RandomTests.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testMultithreading1() throws Exception { final AtomicInteger cnt = new AtomicInteger(0); final CopyOnWriteArrayList<float[]> list = new CopyOnWriteArrayList<>(); Thread[] threads = new Thread[10]; for (int x = 0; x < threads.length; x++) { list.add(null); } for (int x = 0; x < threads.length; x++) { threads[x] = new Thread(new Runnable() { @Override public void run() { Random rnd = Nd4j.getRandom(); rnd.setSeed(119); float[] array = new float[10]; for (int e = 0; e < array.length; e++) { array[e] = rnd.nextFloat(); } list.set(cnt.getAndIncrement(), array); } }); threads[x].start(); } // we want all threads finished before comparing arrays for (int x = 0; x < threads.length; x++) threads[x].join(); for (int x = 0; x < threads.length; x++) { assertNotEquals(null, list.get(x)); if (x > 0) { assertArrayEquals(list.get(0), list.get(x), 1e-5f); } } }
Example 6
Source File: RandomCropTransform.java From DataVec with Apache License 2.0 | 5 votes |
public RandomCropTransform(Random random, long seed, int height, int width) { super(random); this.outputHeight = height; this.outputWidth = width; this.rng = Nd4j.getRandom(); this.rng.setSeed(seed); this.converter = new OpenCVFrameConverter.ToMat(); }
Example 7
Source File: RandomProjection.java From deeplearning4j with Apache License 2.0 | 4 votes |
public RandomProjection(double eps){ this(eps, Nd4j.getRandom()); }
Example 8
Source File: OrthogonalDistribution.java From deeplearning4j with Apache License 2.0 | 4 votes |
public OrthogonalDistribution(double gain) { this.gain = gain; this.random = Nd4j.getRandom(); }
Example 9
Source File: RandomProjection.java From nd4j with Apache License 2.0 | 4 votes |
public RandomProjection(int components){ this(components, Nd4j.getRandom()); }
Example 10
Source File: BaseDistribution.java From nd4j with Apache License 2.0 | 4 votes |
public BaseDistribution() { this(Nd4j.getRandom()); }
Example 11
Source File: ConstantDistribution.java From deeplearning4j with Apache License 2.0 | 4 votes |
public ConstantDistribution(double value) { this.value = value; this.random = Nd4j.getRandom(); }
Example 12
Source File: CartpoleEnvironment.java From deeplearning4j with Apache License 2.0 | 4 votes |
public CartpoleEnvironment() { this(Nd4j.getRandom()); }
Example 13
Source File: LogNormalDistribution.java From nd4j with Apache License 2.0 | 4 votes |
public LogNormalDistribution(INDArray mean, double std) { this.means = mean; this.standardDeviation = std; this.random = Nd4j.getRandom(); }
Example 14
Source File: TruncatedNormalDistribution.java From nd4j with Apache License 2.0 | 4 votes |
public TruncatedNormalDistribution(INDArray mean, double std) { this.means = mean; this.standardDeviation = std; this.random = Nd4j.getRandom(); }
Example 15
Source File: DiscreteSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public DiscreteSpace(int size) { this(size, Nd4j.getRandom()); }
Example 16
Source File: ACPolicy.java From deeplearning4j with Apache License 2.0 | 4 votes |
public ACPolicy(IActorCritic actorCritic) { this(actorCritic, Nd4j.getRandom()); }
Example 17
Source File: RandomProjection.java From deeplearning4j with Apache License 2.0 | 4 votes |
public RandomProjection(int components){ this(components, Nd4j.getRandom()); }
Example 18
Source File: NormalDistribution.java From deeplearning4j with Apache License 2.0 | 4 votes |
public NormalDistribution(INDArray mean, double std) { this.means = mean; this.standardDeviation = std; this.random = Nd4j.getRandom(); }
Example 19
Source File: UniformDistribution.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Create a uniform real distribution using the given lower and upper * bounds. * * @param lower Lower bound of this distribution (inclusive). * @param upper Upper bound of this distribution (exclusive). * @throws NumberIsTooLargeException if {@code lower >= upper}. */ public UniformDistribution(double lower, double upper) throws NumberIsTooLargeException { this(Nd4j.getRandom(), lower, upper); }
Example 20
Source File: TruncatedNormalDistribution.java From nd4j with Apache License 2.0 | 2 votes |
/** * Create a normal distribution using the given mean, standard deviation and * inverse cumulative distribution accuracy. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code sd <= 0}. * @since 2.1 */ public TruncatedNormalDistribution(double mean, double sd, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(Nd4j.getRandom(), mean, sd, inverseCumAccuracy); }