Java Code Examples for org.jpmml.converter.mining.MiningModelUtil#createClassification()

The following examples show how to use org.jpmml.converter.mining.MiningModelUtil#createClassification() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MultinomialLogisticRegression.java    From jpmml-lightgbm with GNU Affero General Public License v3.0 6 votes vote down vote up
@Override
public MiningModel encodeMiningModel(List<Tree> trees, Integer numIteration, Schema schema){
	Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE);

	List<MiningModel> miningModels = new ArrayList<>();

	CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();

	for(int i = 0, rows = categoricalLabel.size(), columns = (trees.size() / rows); i < rows; i++){
		MiningModel miningModel = createMiningModel(FortranMatrixUtil.getRow(trees, rows, columns, i), numIteration, segmentSchema)
			.setOutput(ModelUtil.createPredictedOutput(FieldName.create("lgbmValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE));

		miningModels.add(miningModel);
	}

	return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
}
 
Example 2
Source File: MultinomialLogisticRegression.java    From jpmml-xgboost with GNU Affero General Public License v3.0 6 votes vote down vote up
@Override
public MiningModel encodeMiningModel(List<RegTree> trees, List<Float> weights, float base_score, Integer ntreeLimit, Schema schema){
	Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.FLOAT);

	List<MiningModel> miningModels = new ArrayList<>();

	CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();

	for(int i = 0, columns = categoricalLabel.size(), rows = (trees.size() / columns); i < columns; i++){
		MiningModel miningModel = createMiningModel(CMatrixUtil.getColumn(trees, rows, columns, i), (weights != null) ? CMatrixUtil.getColumn(weights, rows, columns, i) : null, base_score, ntreeLimit, segmentSchema)
			.setOutput(ModelUtil.createPredictedOutput(FieldName.create("xgbValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.FLOAT));

		miningModels.add(miningModel);
	}

	return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
}
 
Example 3
Source File: LinearDiscriminantAnalysis.java    From jpmml-sklearn with GNU Affero General Public License v3.0 4 votes vote down vote up
private Model encodeMultinomialModel(Schema schema){
	String sklearnVersion = getSkLearnVersion();
	int[] shape = getCoefShape();

	int numberOfClasses = shape[0];
	int numberOfFeatures = shape[1];

	List<? extends Number> coef = getCoef();
	List<? extends Number> intercept = getIntercept();

	CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();

	List<? extends Feature> features = schema.getFeatures();

	// See https://github.com/scikit-learn/scikit-learn/issues/6848
	boolean corrected = (sklearnVersion != null && SkLearnUtil.compareVersion(sklearnVersion, "0.21") >= 0);

	if(!corrected){
		return super.encodeModel(schema);
	} // End if

	if(numberOfClasses >= 3){
		SchemaUtil.checkSize(numberOfClasses, categoricalLabel);

		Schema segmentSchema = (schema.toAnonymousRegressorSchema(DataType.DOUBLE)).toEmptySchema();

		List<RegressionModel> regressionModels = new ArrayList<>();

		for(int i = 0, rows = categoricalLabel.size(); i < rows; i++){
			RegressionModel regressionModel = RegressionModelUtil.createRegression(features, CMatrixUtil.getRow(coef, numberOfClasses, numberOfFeatures, i), intercept.get(i), RegressionModel.NormalizationMethod.NONE, segmentSchema)
				.setOutput(ModelUtil.createPredictedOutput(FieldName.create("decisionFunction(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE));

			regressionModels.add(regressionModel);
		}

		return MiningModelUtil.createClassification(regressionModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
	} else

	{
		throw new IllegalArgumentException();
	}
}
 
Example 4
Source File: GBMConverter.java    From jpmml-r with GNU Affero General Public License v3.0 4 votes vote down vote up
private MiningModel encodeMultinomialClassification(List<TreeModel> treeModels, Double initF, Schema schema){
	CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();

	Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE);

	List<Model> miningModels = new ArrayList<>();

	for(int i = 0, columns = categoricalLabel.size(), rows = (treeModels.size() / columns); i < columns; i++){
		MiningModel miningModel = createMiningModel(CMatrixUtil.getColumn(treeModels, rows, columns, i), initF, segmentSchema)
			.setOutput(ModelUtil.createPredictedOutput(FieldName.create("gbmValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE));

		miningModels.add(miningModel);
	}

	return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
}
 
Example 5
Source File: LinearClassifier.java    From jpmml-sklearn with GNU Affero General Public License v3.0 2 votes vote down vote up
@Override
public Model encodeModel(Schema schema){
	int[] shape = getCoefShape();

	int numberOfClasses = shape[0];
	int numberOfFeatures = shape[1];

	boolean hasProbabilityDistribution = hasProbabilityDistribution();

	List<? extends Number> coef = getCoef();
	List<? extends Number> intercept = getIntercept();

	CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();

	List<? extends Feature> features = schema.getFeatures();

	if(numberOfClasses == 1){
		SchemaUtil.checkSize(2, categoricalLabel);

		return RegressionModelUtil.createBinaryLogisticClassification(features, CMatrixUtil.getRow(coef, numberOfClasses, numberOfFeatures, 0), intercept.get(0), RegressionModel.NormalizationMethod.LOGIT, hasProbabilityDistribution, schema);
	} else

	if(numberOfClasses >= 3){
		SchemaUtil.checkSize(numberOfClasses, categoricalLabel);

		Schema segmentSchema = (schema.toAnonymousRegressorSchema(DataType.DOUBLE)).toEmptySchema();

		List<RegressionModel> regressionModels = new ArrayList<>();

		for(int i = 0, rows = categoricalLabel.size(); i < rows; i++){
			RegressionModel regressionModel = RegressionModelUtil.createRegression(features, CMatrixUtil.getRow(coef, numberOfClasses, numberOfFeatures, i), intercept.get(i), RegressionModel.NormalizationMethod.LOGIT, segmentSchema)
				.setOutput(ModelUtil.createPredictedOutput(FieldName.create("decisionFunction(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE));

			regressionModels.add(regressionModel);
		}

		return MiningModelUtil.createClassification(regressionModels, RegressionModel.NormalizationMethod.SIMPLEMAX, hasProbabilityDistribution, schema);
	} else

	{
		throw new IllegalArgumentException();
	}
}