Java Code Examples for org.jbox2d.common.Vec2#addLocal()
The following examples show how to use
org.jbox2d.common.Vec2#addLocal() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: PolygonShape.java From jbox2d with BSD 2-Clause "Simplified" License | 5 votes |
public final void computeCentroidToOut(final Vec2[] vs, final int count, final Vec2 out) { assert (count >= 3); out.set(0.0f, 0.0f); float area = 0.0f; // pRef is the reference point for forming triangles. // It's location doesn't change the result (except for rounding error). final Vec2 pRef = pool1; pRef.setZero(); final Vec2 e1 = pool2; final Vec2 e2 = pool3; final float inv3 = 1.0f / 3.0f; for (int i = 0; i < count; ++i) { // Triangle vertices. final Vec2 p1 = pRef; final Vec2 p2 = vs[i]; final Vec2 p3 = i + 1 < count ? vs[i + 1] : vs[0]; e1.set(p2).subLocal(p1); e2.set(p3).subLocal(p1); final float D = Vec2.cross(e1, e2); final float triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid e1.set(p1).addLocal(p2).addLocal(p3).mulLocal(triangleArea * inv3); out.addLocal(e1); } // Centroid assert (area > Settings.EPSILON); out.mulLocal(1.0f / area); }
Example 2
Source File: AABB.java From jbox2d with BSD 2-Clause "Simplified" License | 5 votes |
/** * Get the center of the AABB * * @return */ public final Vec2 getCenter() { final Vec2 center = new Vec2(lowerBound); center.addLocal(upperBound); center.mulLocal(.5f); return center; }
Example 3
Source File: DistanceJoint.java From jbox2d with BSD 2-Clause "Simplified" License | 5 votes |
@Override public void solveVelocityConstraints(final SolverData data) { Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; final Vec2 vpA = pool.popVec2(); final Vec2 vpB = pool.popVec2(); // Cdot = dot(u, v + cross(w, r)) Vec2.crossToOutUnsafe(wA, m_rA, vpA); vpA.addLocal(vA); Vec2.crossToOutUnsafe(wB, m_rB, vpB); vpB.addLocal(vB); float Cdot = Vec2.dot(m_u, vpB.subLocal(vpA)); float impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); m_impulse += impulse; float Px = impulse * m_u.x; float Py = impulse * m_u.y; vA.x -= m_invMassA * Px; vA.y -= m_invMassA * Py; wA -= m_invIA * (m_rA.x * Py - m_rA.y * Px); vB.x += m_invMassB * Px; vB.y += m_invMassB * Py; wB += m_invIB * (m_rB.x * Py - m_rB.y * Px); // data.velocities[m_indexA].v.set(vA); data.velocities[m_indexA].w = wA; // data.velocities[m_indexB].v.set(vB); data.velocities[m_indexB].w = wB; pool.pushVec2(2); }
Example 4
Source File: MouseJoint.java From jbox2d with BSD 2-Clause "Simplified" License | 5 votes |
@Override public void solveVelocityConstraints(final SolverData data) { Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; // Cdot = v + cross(w, r) final Vec2 Cdot = pool.popVec2(); Vec2.crossToOutUnsafe(wB, m_rB, Cdot); Cdot.addLocal(vB); final Vec2 impulse = pool.popVec2(); final Vec2 temp = pool.popVec2(); temp.set(m_impulse).mulLocal(m_gamma).addLocal(m_C).addLocal(Cdot).negateLocal(); Mat22.mulToOutUnsafe(m_mass, temp, impulse); Vec2 oldImpulse = temp; oldImpulse.set(m_impulse); m_impulse.addLocal(impulse); float maxImpulse = data.step.dt * m_maxForce; if (m_impulse.lengthSquared() > maxImpulse * maxImpulse) { m_impulse.mulLocal(maxImpulse / m_impulse.length()); } impulse.set(m_impulse).subLocal(oldImpulse); vB.x += m_invMassB * impulse.x; vB.y += m_invMassB * impulse.y; wB += m_invIB * Vec2.cross(m_rB, impulse); // data.velocities[m_indexB].v.set(vB); data.velocities[m_indexB].w = wB; pool.pushVec2(3); }
Example 5
Source File: PulleyJoint.java From jbox2d with BSD 2-Clause "Simplified" License | 5 votes |
@Override public void solveVelocityConstraints(final SolverData data) { Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; final Vec2 vpA = pool.popVec2(); final Vec2 vpB = pool.popVec2(); final Vec2 PA = pool.popVec2(); final Vec2 PB = pool.popVec2(); Vec2.crossToOutUnsafe(wA, m_rA, vpA); vpA.addLocal(vA); Vec2.crossToOutUnsafe(wB, m_rB, vpB); vpB.addLocal(vB); float Cdot = -Vec2.dot(m_uA, vpA) - m_ratio * Vec2.dot(m_uB, vpB); float impulse = -m_mass * Cdot; m_impulse += impulse; PA.set(m_uA).mulLocal(-impulse); PB.set(m_uB).mulLocal(-m_ratio * impulse); vA.x += m_invMassA * PA.x; vA.y += m_invMassA * PA.y; wA += m_invIA * Vec2.cross(m_rA, PA); vB.x += m_invMassB * PB.x; vB.y += m_invMassB * PB.y; wB += m_invIB * Vec2.cross(m_rB, PB); // data.velocities[m_indexA].v.set(vA); data.velocities[m_indexA].w = wA; // data.velocities[m_indexB].v.set(vB); data.velocities[m_indexB].w = wB; pool.pushVec2(4); }
Example 6
Source File: TestbedTest.java From jbox2d with BSD 2-Clause "Simplified" License | 5 votes |
private void launchBomb(Vec2 position, Vec2 velocity) { if (bomb != null) { m_world.destroyBody(bomb); bomb = null; } // todo optimize this BodyDef bd = new BodyDef(); bd.type = BodyType.DYNAMIC; bd.position.set(position); bd.bullet = true; bomb = m_world.createBody(bd); bomb.setLinearVelocity(velocity); CircleShape circle = new CircleShape(); circle.m_radius = 0.3f; FixtureDef fd = new FixtureDef(); fd.shape = circle; fd.density = 20f; fd.restitution = 0; Vec2 minV = new Vec2(position); Vec2 maxV = new Vec2(position); minV.subLocal(new Vec2(.3f, .3f)); maxV.addLocal(new Vec2(.3f, .3f)); aabb.lowerBound.set(minV); aabb.upperBound.set(maxV); bomb.createFixture(fd); }
Example 7
Source File: PolygonShape.java From jbox2d with BSD 2-Clause "Simplified" License | 4 votes |
public void computeMass(final MassData massData, float density) { // Polygon mass, centroid, and inertia. // Let rho be the polygon density in mass per unit area. // Then: // mass = rho * int(dA) // centroid.x = (1/mass) * rho * int(x * dA) // centroid.y = (1/mass) * rho * int(y * dA) // I = rho * int((x*x + y*y) * dA) // // We can compute these integrals by summing all the integrals // for each triangle of the polygon. To evaluate the integral // for a single triangle, we make a change of variables to // the (u,v) coordinates of the triangle: // x = x0 + e1x * u + e2x * v // y = y0 + e1y * u + e2y * v // where 0 <= u && 0 <= v && u + v <= 1. // // We integrate u from [0,1-v] and then v from [0,1]. // We also need to use the Jacobian of the transformation: // D = cross(e1, e2) // // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) // // The rest of the derivation is handled by computer algebra. assert (m_count >= 3); final Vec2 center = pool1; center.setZero(); float area = 0.0f; float I = 0.0f; // pRef is the reference point for forming triangles. // It's location doesn't change the result (except for rounding error). final Vec2 s = pool2; s.setZero(); // This code would put the reference point inside the polygon. for (int i = 0; i < m_count; ++i) { s.addLocal(m_vertices[i]); } s.mulLocal(1.0f / m_count); final float k_inv3 = 1.0f / 3.0f; final Vec2 e1 = pool3; final Vec2 e2 = pool4; for (int i = 0; i < m_count; ++i) { // Triangle vertices. e1.set(m_vertices[i]).subLocal(s); e2.set(s).negateLocal().addLocal(i + 1 < m_count ? m_vertices[i + 1] : m_vertices[0]); final float D = Vec2.cross(e1, e2); final float triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid center.x += triangleArea * k_inv3 * (e1.x + e2.x); center.y += triangleArea * k_inv3 * (e1.y + e2.y); final float ex1 = e1.x, ey1 = e1.y; final float ex2 = e2.x, ey2 = e2.y; float intx2 = ex1 * ex1 + ex2 * ex1 + ex2 * ex2; float inty2 = ey1 * ey1 + ey2 * ey1 + ey2 * ey2; I += (0.25f * k_inv3 * D) * (intx2 + inty2); } // Total mass massData.mass = density * area; // Center of mass assert (area > Settings.EPSILON); center.mulLocal(1.0f / area); massData.center.set(center).addLocal(s); // Inertia tensor relative to the local origin (point s) massData.I = I * density; // Shift to center of mass then to original body origin. massData.I += massData.mass * (Vec2.dot(massData.center, massData.center)); }
Example 8
Source File: RopeJoint.java From jbox2d with BSD 2-Clause "Simplified" License | 4 votes |
@Override public void solveVelocityConstraints(final SolverData data) { Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; // Cdot = dot(u, v + cross(w, r)) Vec2 vpA = pool.popVec2(); Vec2 vpB = pool.popVec2(); Vec2 temp = pool.popVec2(); Vec2.crossToOutUnsafe(wA, m_rA, vpA); vpA.addLocal(vA); Vec2.crossToOutUnsafe(wB, m_rB, vpB); vpB.addLocal(vB); float C = m_length - m_maxLength; float Cdot = Vec2.dot(m_u, temp.set(vpB).subLocal(vpA)); // Predictive constraint. if (C < 0.0f) { Cdot += data.step.inv_dt * C; } float impulse = -m_mass * Cdot; float oldImpulse = m_impulse; m_impulse = MathUtils.min(0.0f, m_impulse + impulse); impulse = m_impulse - oldImpulse; float Px = impulse * m_u.x; float Py = impulse * m_u.y; vA.x -= m_invMassA * Px; vA.y -= m_invMassA * Py; wA -= m_invIA * (m_rA.x * Py - m_rA.y * Px); vB.x += m_invMassB * Px; vB.y += m_invMassB * Py; wB += m_invIB * (m_rB.x * Py - m_rB.y * Px); pool.pushVec2(3); // data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; // data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; }
Example 9
Source File: FrictionJoint.java From jbox2d with BSD 2-Clause "Simplified" License | 4 votes |
/** * @see org.jbox2d.dynamics.joints.Joint#initVelocityConstraints(org.jbox2d.dynamics.TimeStep) */ @Override public void initVelocityConstraints(final SolverData data) { m_indexA = m_bodyA.m_islandIndex; m_indexB = m_bodyB.m_islandIndex; m_localCenterA.set(m_bodyA.m_sweep.localCenter); m_localCenterB.set(m_bodyB.m_sweep.localCenter); m_invMassA = m_bodyA.m_invMass; m_invMassB = m_bodyB.m_invMass; m_invIA = m_bodyA.m_invI; m_invIB = m_bodyB.m_invI; float aA = data.positions[m_indexA].a; Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; float aB = data.positions[m_indexB].a; Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; final Vec2 temp = pool.popVec2(); final Rot qA = pool.popRot(); final Rot qB = pool.popRot(); qA.set(aA); qB.set(aB); // Compute the effective mass matrix. Rot.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA); Rot.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; final Mat22 K = pool.popMat22(); K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; K.ey.x = K.ex.y; K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; K.invertToOut(m_linearMass); m_angularMass = iA + iB; if (m_angularMass > 0.0f) { m_angularMass = 1.0f / m_angularMass; } if (data.step.warmStarting) { // Scale impulses to support a variable time step. m_linearImpulse.mulLocal(data.step.dtRatio); m_angularImpulse *= data.step.dtRatio; final Vec2 P = pool.popVec2(); P.set(m_linearImpulse); temp.set(P).mulLocal(mA); vA.subLocal(temp); wA -= iA * (Vec2.cross(m_rA, P) + m_angularImpulse); temp.set(P).mulLocal(mB); vB.addLocal(temp); wB += iB * (Vec2.cross(m_rB, P) + m_angularImpulse); pool.pushVec2(1); } else { m_linearImpulse.setZero(); m_angularImpulse = 0.0f; } // data.velocities[m_indexA].v.set(vA); if( data.velocities[m_indexA].w != wA) { assert(data.velocities[m_indexA].w != wA); } data.velocities[m_indexA].w = wA; // data.velocities[m_indexB].v.set(vB); data.velocities[m_indexB].w = wB; pool.pushRot(2); pool.pushVec2(1); pool.pushMat22(1); }