org.apache.commons.math3.linear.DecompositionSolver Java Examples
The following examples show how to use
org.apache.commons.math3.linear.DecompositionSolver.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: LibCommonsMath.java From systemds with Apache License 2.0 | 6 votes |
/** * Function to solve a given system of equations. * * @param in1 matrix object 1 * @param in2 matrix object 2 * @return matrix block */ private static MatrixBlock computeSolve(MatrixBlock in1, MatrixBlock in2) { //convert to commons math BlockRealMatrix instead of Array2DRowRealMatrix //to avoid unnecessary conversion as QR internally creates a BlockRealMatrix BlockRealMatrix matrixInput = DataConverter.convertToBlockRealMatrix(in1); BlockRealMatrix vectorInput = DataConverter.convertToBlockRealMatrix(in2); /*LUDecompositionImpl ludecompose = new LUDecompositionImpl(matrixInput); DecompositionSolver lusolver = ludecompose.getSolver(); RealMatrix solutionMatrix = lusolver.solve(vectorInput);*/ // Setup a solver based on QR Decomposition QRDecomposition qrdecompose = new QRDecomposition(matrixInput); DecompositionSolver solver = qrdecompose.getSolver(); // Invoke solve RealMatrix solutionMatrix = solver.solve(vectorInput); return DataConverter.convertToMatrixBlock(solutionMatrix); }
Example #2
Source File: AbstractLeastSquaresOptimizer.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Get the covariance matrix of the optimized parameters. * <br/> * Note that this operation involves the inversion of the * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the * Jacobian matrix. * The {@code threshold} parameter is a way for the caller to specify * that the result of this computation should be considered meaningless, * and thus trigger an exception. * * @param threshold Singularity threshold. * @return the covariance matrix. * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix cannot be computed (singular problem). */ public double[][] getCovariances(double threshold) { // Set up the jacobian. updateJacobian(); // Compute transpose(J)J, without building intermediate matrices. double[][] jTj = new double[cols][cols]; for (int i = 0; i < cols; ++i) { for (int j = i; j < cols; ++j) { double sum = 0; for (int k = 0; k < rows; ++k) { sum += weightedResidualJacobian[k][i] * weightedResidualJacobian[k][j]; } jTj[i][j] = sum; jTj[j][i] = sum; } } // Compute the covariances matrix. final DecompositionSolver solver = new QRDecomposition(MatrixUtils.createRealMatrix(jTj), threshold).getSolver(); return solver.getInverse().getData(); }
Example #3
Source File: LinearAlgebra.java From finmath-lib with Apache License 2.0 | 6 votes |
/** * Find a solution of the linear equation A x = b where * <ul> * <li>A is an symmetric n x n - matrix given as double[n][n]</li> * <li>b is an n - vector given as double[n],</li> * <li>x is an n - vector given as double[n],</li> * </ul> * * @param matrix The matrix A (left hand side of the linear equation). * @param vector The vector b (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquationSymmetric(final double[][] matrix, final double[] vector) { if(isSolverUseApacheCommonsMath) { final DecompositionSolver solver = new LUDecomposition(new Array2DRowRealMatrix(matrix)).getSolver(); return solver.solve(new Array2DRowRealMatrix(vector)).getColumn(0); } else { return org.jblas.Solve.solveSymmetric(new org.jblas.DoubleMatrix(matrix), new org.jblas.DoubleMatrix(vector)).data; /* To use the linear algebra package colt from cern. cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); double[] x = linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); return x; */ } }
Example #4
Source File: AbstractLeastSquaresOptimizer.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Get the covariance matrix of the optimized parameters. * <br/> * Note that this operation involves the inversion of the * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the * Jacobian matrix. * The {@code threshold} parameter is a way for the caller to specify * that the result of this computation should be considered meaningless, * and thus trigger an exception. * * @param threshold Singularity threshold. * @return the covariance matrix. * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix cannot be computed (singular problem). */ public double[][] getCovariances(double threshold) { // Set up the jacobian. updateJacobian(); // Compute transpose(J)J, without building intermediate matrices. double[][] jTj = new double[cols][cols]; for (int i = 0; i < cols; ++i) { for (int j = i; j < cols; ++j) { double sum = 0; for (int k = 0; k < rows; ++k) { sum += weightedResidualJacobian[k][i] * weightedResidualJacobian[k][j]; } jTj[i][j] = sum; jTj[j][i] = sum; } } // Compute the covariances matrix. final DecompositionSolver solver = new QRDecomposition(MatrixUtils.createRealMatrix(jTj), threshold).getSolver(); return solver.getInverse().getData(); }
Example #5
Source File: LinearAlgebra.java From finmath-lib with Apache License 2.0 | 6 votes |
/** * Find a solution of the linear equation A x = b where * <ul> * <li>A is an n x m - matrix given as double[n][m]</li> * <li>b is an m - vector given as double[m],</li> * <li>x is an n - vector given as double[n],</li> * </ul> * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquationSVD(final double[][] matrixA, final double[] b) { if(isSolverUseApacheCommonsMath) { final Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixA); // Using SVD - very slow final DecompositionSolver solver = new SingularValueDecomposition(matrix).getSolver(); return solver.solve(new Array2DRowRealMatrix(b)).getColumn(0); } else { return org.jblas.Solve.solve(new org.jblas.DoubleMatrix(matrixA), new org.jblas.DoubleMatrix(b)).data; // For use of colt: // cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); // return linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); // For use of parallel colt: // return new cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleLUDecomposition(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D(A)).solve(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D(b)).toArray(); } }
Example #6
Source File: LibCommonsMath.java From systemds with Apache License 2.0 | 6 votes |
/** * Function to solve a given system of equations. * * @param in1 matrix object 1 * @param in2 matrix object 2 * @return matrix block */ private static MatrixBlock computeSolve(MatrixBlock in1, MatrixBlock in2) { //convert to commons math BlockRealMatrix instead of Array2DRowRealMatrix //to avoid unnecessary conversion as QR internally creates a BlockRealMatrix BlockRealMatrix matrixInput = DataConverter.convertToBlockRealMatrix(in1); BlockRealMatrix vectorInput = DataConverter.convertToBlockRealMatrix(in2); /*LUDecompositionImpl ludecompose = new LUDecompositionImpl(matrixInput); DecompositionSolver lusolver = ludecompose.getSolver(); RealMatrix solutionMatrix = lusolver.solve(vectorInput);*/ // Setup a solver based on QR Decomposition QRDecomposition qrdecompose = new QRDecomposition(matrixInput); DecompositionSolver solver = qrdecompose.getSolver(); // Invoke solve RealMatrix solutionMatrix = solver.solve(vectorInput); return DataConverter.convertToMatrixBlock(solutionMatrix); }
Example #7
Source File: LinearAlgebra.java From finmath-lib with Apache License 2.0 | 6 votes |
/** * Find a solution of the linear equation A x = b where * <ul> * <li>A is an n x m - matrix given as double[n][m]</li> * <li>b is an m - vector given as double[m],</li> * <li>x is an n - vector given as double[n],</li> * </ul> * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquationSVD(final double[][] matrixA, final double[] b) { if(isSolverUseApacheCommonsMath) { final Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixA); // Using SVD - very slow final DecompositionSolver solver = new SingularValueDecomposition(matrix).getSolver(); return solver.solve(new Array2DRowRealMatrix(b)).getColumn(0); } else { return org.jblas.Solve.solve(new org.jblas.DoubleMatrix(matrixA), new org.jblas.DoubleMatrix(b)).data; // For use of colt: // cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); // return linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); // For use of parallel colt: // return new cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleLUDecomposition(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D(A)).solve(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D(b)).toArray(); } }
Example #8
Source File: LinearAlgebra.java From finmath-lib with Apache License 2.0 | 6 votes |
/** * Find a solution of the linear equation A x = b where * <ul> * <li>A is an symmetric n x n - matrix given as double[n][n]</li> * <li>b is an n - vector given as double[n],</li> * <li>x is an n - vector given as double[n],</li> * </ul> * * @param matrix The matrix A (left hand side of the linear equation). * @param vector The vector b (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquationSymmetric(final double[][] matrix, final double[] vector) { if(isSolverUseApacheCommonsMath) { final DecompositionSolver solver = new LUDecomposition(new Array2DRowRealMatrix(matrix)).getSolver(); return solver.solve(new Array2DRowRealMatrix(vector)).getColumn(0); } else { return org.jblas.Solve.solveSymmetric(new org.jblas.DoubleMatrix(matrix), new org.jblas.DoubleMatrix(vector)).data; /* To use the linear algebra package colt from cern. cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); double[] x = linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); return x; */ } }
Example #9
Source File: CommonsMathLinearSystemSolver.java From myrrix-recommender with Apache License 2.0 | 6 votes |
@Override public Solver getSolver(RealMatrix M) { if (M == null) { return null; } RRQRDecomposition decomposition = new RRQRDecomposition(M, SINGULARITY_THRESHOLD); DecompositionSolver solver = decomposition.getSolver(); if (solver.isNonSingular()) { return new CommonsMathSolver(solver); } // Otherwise try to report apparent rank int apparentRank = decomposition.getRank(0.01); // Better value? log.warn("{} x {} matrix is near-singular (threshold {}). Add more data or decrease the value of model.features, " + "to <= about {}", M.getRowDimension(), M.getColumnDimension(), SINGULARITY_THRESHOLD, apparentRank); throw new SingularMatrixSolverException(apparentRank, "Apparent rank: " + apparentRank); }
Example #10
Source File: AbstractLeastSquaresOptimizer.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Get the covariance matrix of the optimized parameters. * <br/> * Note that this operation involves the inversion of the * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the * Jacobian matrix. * The {@code threshold} parameter is a way for the caller to specify * that the result of this computation should be considered meaningless, * and thus trigger an exception. * * @param threshold Singularity threshold. * @return the covariance matrix. * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix cannot be computed (singular problem). */ public double[][] getCovariances(double threshold) { // Set up the jacobian. updateJacobian(); // Compute transpose(J)J, without building intermediate matrices. double[][] jTj = new double[cols][cols]; for (int i = 0; i < cols; ++i) { for (int j = i; j < cols; ++j) { double sum = 0; for (int k = 0; k < rows; ++k) { sum += weightedResidualJacobian[k][i] * weightedResidualJacobian[k][j]; } jTj[i][j] = sum; jTj[j][i] = sum; } } // Compute the covariances matrix. final DecompositionSolver solver = new QRDecomposition(MatrixUtils.createRealMatrix(jTj), threshold).getSolver(); return solver.getInverse().getData(); }
Example #11
Source File: LinearSystemSolver.java From oryx with Apache License 2.0 | 6 votes |
/** * @param data dense matrix represented in row-major form * @return solver for the system Ax = b */ static Solver getSolver(double[][] data) { if (data == null) { return null; } RealMatrix M = new Array2DRowRealMatrix(data, false); double infNorm = M.getNorm(); double singularityThreshold = infNorm * SINGULARITY_THRESHOLD_RATIO; RRQRDecomposition decomposition = new RRQRDecomposition(M, singularityThreshold); DecompositionSolver solver = decomposition.getSolver(); if (solver.isNonSingular()) { return new Solver(solver); } // Otherwise try to report apparent rank int apparentRank = decomposition.getRank(0.01); // Better value? log.warn("{} x {} matrix is near-singular (threshold {}). Add more data or decrease the " + "number of features, to <= about {}", M.getRowDimension(), M.getColumnDimension(), singularityThreshold, apparentRank); throw new SingularMatrixSolverException(apparentRank, "Apparent rank: " + apparentRank); }
Example #12
Source File: MatrixUtils.java From incubator-hivemall with Apache License 2.0 | 5 votes |
@Nonnull public static RealMatrix inverse(@Nonnull final RealMatrix m, final boolean exact) throws SingularMatrixException { LUDecomposition LU = new LUDecomposition(m); DecompositionSolver solver = LU.getSolver(); final RealMatrix inv; if (exact || solver.isNonSingular()) { inv = solver.getInverse(); } else { SingularValueDecomposition SVD = new SingularValueDecomposition(m); inv = SVD.getSolver().getInverse(); } return inv; }
Example #13
Source File: CommonsMathSolver.java From elasticsearch-linear-regression with Apache License 2.0 | 5 votes |
@Override public SlopeCoefficients estimateCoefficients(final DerivationEquation eq) throws EstimationException { final double[][] sourceTriangleMatrix = eq.getCovarianceLowerTriangularMatrix(); // Copy matrix and enhance it to a full matrix as expected by CholeskyDecomposition // FIXME: Avoid copy job to speed-up the solving process e.g. by extending the CholeskyDecomposition constructor final int length = sourceTriangleMatrix.length; final double[][] matrix = new double[length][]; for (int i = 0; i < length; i++) { matrix[i] = new double[length]; final double[] s = sourceTriangleMatrix[i]; final double[] t = matrix[i]; for (int j = 0; j <= i; j++) { t[j] = s[j]; } for (int j = i + 1; j < length; j++) { t[j] = sourceTriangleMatrix[j][i]; } } final RealMatrix coefficients = new Array2DRowRealMatrix(matrix, false); try { final DecompositionSolver solver = new CholeskyDecomposition(coefficients).getSolver(); final RealVector constants = new ArrayRealVector(eq.getConstraints(), true); final RealVector solution = solver.solve(constants); return new DefaultSlopeCoefficients(solution.toArray()); } catch (final NonPositiveDefiniteMatrixException e) { throw new EstimationException("Matrix inversion error due to data is linearly dependent", e); } }
Example #14
Source File: MatrixUtils.java From incubator-hivemall with Apache License 2.0 | 5 votes |
/** * L = A x R * * @return a matrix A that minimizes A x R - L */ @Nonnull public static RealMatrix solve(@Nonnull final RealMatrix L, @Nonnull final RealMatrix R, final boolean exact) throws SingularMatrixException { LUDecomposition LU = new LUDecomposition(R); DecompositionSolver solver = LU.getSolver(); final RealMatrix A; if (exact || solver.isNonSingular()) { A = LU.getSolver().solve(L); } else { SingularValueDecomposition SVD = new SingularValueDecomposition(R); A = SVD.getSolver().solve(L); } return A; }
Example #15
Source File: StatsUtils.java From incubator-hivemall with Apache License 2.0 | 5 votes |
/** * pdf(x, x_hat) = exp(-0.5 * (x-x_hat) * inv(Σ) * (x-x_hat)T) / ( 2π^0.5d * det(Σ)^0.5) * * @return value of probabilistic density function * @link https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Density_function */ public static double pdf(@Nonnull final RealVector x, @Nonnull final RealVector x_hat, @Nonnull final RealMatrix sigma) { final int dim = x.getDimension(); Preconditions.checkArgument(x_hat.getDimension() == dim, "|x| != |x_hat|, |x|=" + dim + ", |x_hat|=" + x_hat.getDimension()); Preconditions.checkArgument(sigma.getRowDimension() == dim, "|x| != |sigma|, |x|=" + dim + ", |sigma|=" + sigma.getRowDimension()); Preconditions.checkArgument(sigma.isSquare(), "Sigma is not square matrix"); LUDecomposition LU = new LUDecomposition(sigma); final double detSigma = LU.getDeterminant(); double denominator = Math.pow(2.d * Math.PI, 0.5d * dim) * Math.pow(detSigma, 0.5d); if (denominator == 0.d) { // avoid divide by zero return 0.d; } final RealMatrix invSigma; DecompositionSolver solver = LU.getSolver(); if (solver.isNonSingular() == false) { SingularValueDecomposition svd = new SingularValueDecomposition(sigma); invSigma = svd.getSolver().getInverse(); // least square solution } else { invSigma = solver.getInverse(); } //EigenDecomposition eigen = new EigenDecomposition(sigma); //double detSigma = eigen.getDeterminant(); //RealMatrix invSigma = eigen.getSolver().getInverse(); RealVector diff = x.subtract(x_hat); RealVector premultiplied = invSigma.preMultiply(diff); double sum = premultiplied.dotProduct(diff); double numerator = Math.exp(-0.5d * sum); return numerator / denominator; }
Example #16
Source File: ApacheSolver.java From orbit-image-analysis with GNU General Public License v3.0 | 5 votes |
/** * @see AbstractSolver#solve(AbstractMatrix, AbstractVector) */ @Override public AbstractVector solve(AbstractMatrix m, AbstractVector b) { if (m instanceof ApacheMatrix && b instanceof ApacheVector) { DecompositionSolver solver = new LUDecomposition(((ApacheMatrix) m).getMatrix()).getSolver(); RealVector bApache = ((ApacheVector) b).getVector(); RealVector solution = solver.solve(bApache); return new ApacheVector(solution); } throw new UnsupportedOperationException(); }
Example #17
Source File: LibCommonsMath.java From systemds with Apache License 2.0 | 5 votes |
/** * Function to compute matrix inverse via matrix decomposition. * * @param in commons-math3 Array2DRowRealMatrix * @return matrix block */ private static MatrixBlock computeMatrixInverse(Array2DRowRealMatrix in) { if ( !in.isSquare() ) throw new DMLRuntimeException("Input to inv() must be square matrix -- given: a " + in.getRowDimension() + "x" + in.getColumnDimension() + " matrix."); QRDecomposition qrdecompose = new QRDecomposition(in); DecompositionSolver solver = qrdecompose.getSolver(); RealMatrix inverseMatrix = solver.getInverse(); return DataConverter.convertToMatrixBlock(inverseMatrix.getData()); }
Example #18
Source File: LinalgUtil.java From MeteoInfo with GNU Lesser General Public License v3.0 | 5 votes |
/** * Solve a linear matrix equation, or system of linear scalar equations. * * @param a Coefficient matrix. * @param b Ordinate or “dependent variable” values. * @return Solution to the system a x = b. Returned shape is identical to b. */ public static Array solve(Array a, Array b) { Array r = Array.factory(DataType.DOUBLE, b.getShape()); double[][] aa = (double[][]) ArrayUtil.copyToNDJavaArray_Double(a); RealMatrix coefficients = new Array2DRowRealMatrix(aa, false); DecompositionSolver solver = new LUDecomposition(coefficients).getSolver(); double[] bb = (double[]) ArrayUtil.copyToNDJavaArray_Double(b); RealVector constants = new ArrayRealVector(bb, false); RealVector solution = solver.solve(constants); for (int i = 0; i < r.getSize(); i++) { r.setDouble(i, solution.getEntry(i)); } return r; }
Example #19
Source File: MonteCarloConditionalExpectationRegressionLocalizedOnDependents.java From finmath-lib with Apache License 2.0 | 5 votes |
/** * Return the solution x of XTX x = XT y for a given y. * @TODO Performance upon repeated call can be optimized by caching XTX. * * @param dependents The sample vector of the random variable y. * @return The solution x of XTX x = XT y. */ @Override public double[] getLinearRegressionParameters(RandomVariable dependents) { final RandomVariable localizerWeights = dependents.squared().sub(Math.pow(dependents.getStandardDeviation()*standardDeviations,2.0)).choose(new Scalar(0.0), new Scalar(1.0)); // Localize basis functions final RandomVariable[] basisFunctionsNonLocalized = getBasisFunctionsEstimator().getBasisFunctions(); final RandomVariable[] basisFunctions = new RandomVariable[basisFunctionsNonLocalized.length]; for(int i=0; i<basisFunctions.length; i++) { basisFunctions[i] = basisFunctionsNonLocalized[i].mult(localizerWeights); } // Localize dependents dependents = dependents.mult(localizerWeights); // Build XTX - the symmetric matrix consisting of the scalar products of the basis functions. final double[][] XTX = new double[basisFunctions.length][basisFunctions.length]; for(int i=0; i<basisFunctions.length; i++) { for(int j=i; j<basisFunctions.length; j++) { XTX[i][j] = basisFunctions[i].mult(basisFunctions[j]).getAverage(); // Scalar product XTX[j][i] = XTX[i][j]; // Symmetric matrix } } final DecompositionSolver solver = new SingularValueDecomposition(new Array2DRowRealMatrix(XTX, false)).getSolver(); // Build XTy - the projection of the dependents random variable on the basis functions. final double[] XTy = new double[basisFunctions.length]; for(int i=0; i<basisFunctions.length; i++) { XTy[i] = dependents.mult(basisFunctions[i]).getAverage(); // Scalar product } // Solve X^T X x = X^T y - which gives us the regression coefficients x = linearRegressionParameters final double[] linearRegressionParameters = solver.solve(new ArrayRealVector(XTy)).toArray(); return linearRegressionParameters; }
Example #20
Source File: KalmanFilter.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Correct the current state estimate with an actual measurement. * * @param z * the measurement vector * @throws NullArgumentException * if the measurement vector is {@code null} * @throws DimensionMismatchException * if the dimension of the measurement vector does not fit * @throws SingularMatrixException * if the covariance matrix could not be inverted */ public void correct(final RealVector z) throws NullArgumentException, DimensionMismatchException, SingularMatrixException { // sanity checks MathUtils.checkNotNull(z); if (z.getDimension() != measurementMatrix.getRowDimension()) { throw new DimensionMismatchException(z.getDimension(), measurementMatrix.getRowDimension()); } // S = H * P(k) - * H' + R RealMatrix s = measurementMatrix.multiply(errorCovariance) .multiply(measurementMatrixT) .add(measurementModel.getMeasurementNoise()); // invert S // as the error covariance matrix is a symmetric positive // semi-definite matrix, we can use the cholesky decomposition DecompositionSolver solver = new CholeskyDecomposition(s).getSolver(); RealMatrix invertedS = solver.getInverse(); // Inn = z(k) - H * xHat(k)- RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation)); // calculate gain matrix // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1 // K(k) = P(k)- * H' * S^-1 RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS); // update estimate with measurement z(k) // xHat(k) = xHat(k)- + K * Inn stateEstimation = stateEstimation.add(kalmanGain.operate(innovation)); // update covariance of prediction error // P(k) = (I - K * H) * P(k)- RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension()); errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance); }
Example #21
Source File: LinearAlgebra.java From finmath-lib with Apache License 2.0 | 5 votes |
/** * Find a solution of the linear equation A x = b where * <ul> * <li>A is an n x m - matrix given as double[n][m]</li> * <li>b is an m - vector given as double[m],</li> * <li>x is an n - vector given as double[n],</li> * </ul> * using a standard Tikhonov regularization, i.e., we solve in the least square sense * A* x = b* * where A* = (A^T, lambda I)^T and b* = (b^T , 0)^T. * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @param lambda The parameter lambda of the Tikhonov regularization. Lambda effectively measures which small numbers are considered zero. * @return A solution x to A x = b. */ public static double[] solveLinearEquationTikonov(final double[][] matrixA, final double[] b, final double lambda) { if(lambda == 0) { return solveLinearEquationLeastSquare(matrixA, b); } /* * The copy of the array is inefficient, but the use cases for this method are currently limited. * And SVD is an alternative to this method. */ final int rows = matrixA.length; final int cols = matrixA[0].length; final double[][] matrixRegularized = new double[rows+cols][cols]; final double[] bRegularized = new double[rows+cols]; // Note the JVM initializes arrays to zero. for(int i=0; i<rows; i++) { System.arraycopy(matrixA[i], 0, matrixRegularized[i], 0, cols); } System.arraycopy(b, 0, bRegularized, 0, rows); for(int j=0; j<cols; j++) { final double[] matrixRow = matrixRegularized[rows+j]; matrixRow[j] = lambda; } // return solveLinearEquationLeastSquare(matrixRegularized, bRegularized); final DecompositionSolver solver = new QRDecomposition(new Array2DRowRealMatrix(matrixRegularized, false)).getSolver(); return solver.solve(new ArrayRealVector(bRegularized, false)).toArray(); }
Example #22
Source File: KalmanFilter.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Correct the current state estimate with an actual measurement. * * @param z the measurement vector * @throws DimensionMismatchException if the dimension of the * measurement vector does not fit * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix could not be inverted */ public void correct(final RealVector z) { // sanity checks MathUtils.checkNotNull(z); if (z.getDimension() != measurementMatrix.getRowDimension()) { throw new DimensionMismatchException(z.getDimension(), measurementMatrix.getRowDimension()); } // S = H * P(k) - * H' + R RealMatrix s = measurementMatrix.multiply(errorCovariance) .multiply(measurementMatrixT) .add(measurementModel.getMeasurementNoise()); // invert S // as the error covariance matrix is a symmetric positive // semi-definite matrix, we can use the cholesky decomposition DecompositionSolver solver = new CholeskyDecomposition(s).getSolver(); RealMatrix invertedS = solver.getInverse(); // Inn = z(k) - H * xHat(k)- RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation)); // calculate gain matrix // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1 // K(k) = P(k)- * H' * S^-1 RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS); // update estimate with measurement z(k) // xHat(k) = xHat(k)- + K * Inn stateEstimation = stateEstimation.add(kalmanGain.operate(innovation)); // update covariance of prediction error // P(k) = (I - K * H) * P(k)- RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension()); errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance); }
Example #23
Source File: LinearAlgebra.java From finmath-lib with Apache License 2.0 | 5 votes |
/** * Find a solution of the linear equation A x = b where * <ul> * <li>A is an n x m - matrix given as double[n][m]</li> * <li>b is an m - vector given as double[m],</li> * <li>x is an n - vector given as double[n],</li> * </ul> * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquation(final double[][] matrixA, final double[] b) { if(isSolverUseApacheCommonsMath) { final Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixA); DecompositionSolver solver; if(matrix.getColumnDimension() == matrix.getRowDimension()) { solver = new LUDecomposition(matrix).getSolver(); } else { solver = new QRDecomposition(new Array2DRowRealMatrix(matrixA)).getSolver(); } // Using SVD - very slow // solver = new SingularValueDecomposition(new Array2DRowRealMatrix(A)).getSolver(); return solver.solve(new Array2DRowRealMatrix(b)).getColumn(0); } else { return org.jblas.Solve.solve(new org.jblas.DoubleMatrix(matrixA), new org.jblas.DoubleMatrix(b)).data; // For use of colt: // cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); // return linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); // For use of parallel colt: // return new cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleLUDecomposition(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D(A)).solve(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D(b)).toArray(); } }
Example #24
Source File: LinearAlgebra.java From finmath-lib with Apache License 2.0 | 5 votes |
/** * Find a solution of the linear equation A x = b where * <ul> * <li>A is an n x m - matrix given as double[n][m]</li> * <li>b is an m - vector given as double[m],</li> * <li>x is an n - vector given as double[n],</li> * </ul> * using a standard Tikhonov regularization, i.e., we solve in the least square sense * A* x = b* * where A* = (A^T, lambda I)^T and b* = (b^T , 0)^T. * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @param lambda The parameter lambda of the Tikhonov regularization. Lambda effectively measures which small numbers are considered zero. * @return A solution x to A x = b. */ public static double[] solveLinearEquationTikonov(final double[][] matrixA, final double[] b, final double lambda) { if(lambda == 0) { return solveLinearEquationLeastSquare(matrixA, b); } /* * The copy of the array is inefficient, but the use cases for this method are currently limited. * And SVD is an alternative to this method. */ final int rows = matrixA.length; final int cols = matrixA[0].length; final double[][] matrixRegularized = new double[rows+cols][cols]; final double[] bRegularized = new double[rows+cols]; // Note the JVM initializes arrays to zero. for(int i=0; i<rows; i++) { System.arraycopy(matrixA[i], 0, matrixRegularized[i], 0, cols); } System.arraycopy(b, 0, bRegularized, 0, rows); for(int j=0; j<cols; j++) { final double[] matrixRow = matrixRegularized[rows+j]; matrixRow[j] = lambda; } // return solveLinearEquationLeastSquare(matrixRegularized, bRegularized); final DecompositionSolver solver = new QRDecomposition(new Array2DRowRealMatrix(matrixRegularized, false)).getSolver(); return solver.solve(new ArrayRealVector(bRegularized, false)).toArray(); }
Example #25
Source File: MonteCarloConditionalExpectationRegressionLocalizedOnDependents.java From finmath-lib with Apache License 2.0 | 5 votes |
/** * Return the solution x of XTX x = XT y for a given y. * @TODO Performance upon repeated call can be optimized by caching XTX. * * @param dependents The sample vector of the random variable y. * @return The solution x of XTX x = XT y. */ @Override public double[] getLinearRegressionParameters(RandomVariable dependents) { final RandomVariable localizerWeights = dependents.squared().sub(Math.pow(dependents.getStandardDeviation()*standardDeviations,2.0)).choose(new Scalar(0.0), new Scalar(1.0)); // Localize basis functions final RandomVariable[] basisFunctionsNonLocalized = getBasisFunctionsEstimator().getBasisFunctions(); final RandomVariable[] basisFunctions = new RandomVariable[basisFunctionsNonLocalized.length]; for(int i=0; i<basisFunctions.length; i++) { basisFunctions[i] = basisFunctionsNonLocalized[i].mult(localizerWeights); } // Localize dependents dependents = dependents.mult(localizerWeights); // Build XTX - the symmetric matrix consisting of the scalar products of the basis functions. final double[][] XTX = new double[basisFunctions.length][basisFunctions.length]; for(int i=0; i<basisFunctions.length; i++) { for(int j=i; j<basisFunctions.length; j++) { XTX[i][j] = basisFunctions[i].mult(basisFunctions[j]).getAverage(); // Scalar product XTX[j][i] = XTX[i][j]; // Symmetric matrix } } final DecompositionSolver solver = new SingularValueDecomposition(new Array2DRowRealMatrix(XTX, false)).getSolver(); // Build XTy - the projection of the dependents random variable on the basis functions. final double[] XTy = new double[basisFunctions.length]; for(int i=0; i<basisFunctions.length; i++) { XTy[i] = dependents.mult(basisFunctions[i]).getAverage(); // Scalar product } // Solve X^T X x = X^T y - which gives us the regression coefficients x = linearRegressionParameters final double[] linearRegressionParameters = solver.solve(new ArrayRealVector(XTy)).toArray(); return linearRegressionParameters; }
Example #26
Source File: KalmanFilter.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Correct the current state estimate with an actual measurement. * * @param z * the measurement vector * @throws NullArgumentException * if the measurement vector is {@code null} * @throws DimensionMismatchException * if the dimension of the measurement vector does not fit * @throws SingularMatrixException * if the covariance matrix could not be inverted */ public void correct(final RealVector z) throws NullArgumentException, DimensionMismatchException, SingularMatrixException { // sanity checks MathUtils.checkNotNull(z); if (z.getDimension() != measurementMatrix.getRowDimension()) { throw new DimensionMismatchException(z.getDimension(), measurementMatrix.getRowDimension()); } // S = H * P(k) - * H' + R RealMatrix s = measurementMatrix.multiply(errorCovariance) .multiply(measurementMatrixT) .add(measurementModel.getMeasurementNoise()); // invert S // as the error covariance matrix is a symmetric positive // semi-definite matrix, we can use the cholesky decomposition DecompositionSolver solver = new CholeskyDecomposition(s).getSolver(); RealMatrix invertedS = solver.getInverse(); // Inn = z(k) - H * xHat(k)- RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation)); // calculate gain matrix // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1 // K(k) = P(k)- * H' * S^-1 RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS); // update estimate with measurement z(k) // xHat(k) = xHat(k)- + K * Inn stateEstimation = stateEstimation.add(kalmanGain.operate(innovation)); // update covariance of prediction error // P(k) = (I - K * H) * P(k)- RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension()); errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance); }
Example #27
Source File: KalmanFilter.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Correct the current state estimate with an actual measurement. * * @param z the measurement vector * @throws DimensionMismatchException if the dimension of the * measurement vector does not fit * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix could not be inverted */ public void correct(final RealVector z) { // sanity checks MathUtils.checkNotNull(z); if (z.getDimension() != measurementMatrix.getRowDimension()) { throw new DimensionMismatchException(z.getDimension(), measurementMatrix.getRowDimension()); } // S = H * P(k) - * H' + R RealMatrix s = measurementMatrix.multiply(errorCovariance) .multiply(measurementMatrixT) .add(measurementModel.getMeasurementNoise()); // invert S // as the error covariance matrix is a symmetric positive // semi-definite matrix, we can use the cholesky decomposition DecompositionSolver solver = new CholeskyDecomposition(s).getSolver(); RealMatrix invertedS = solver.getInverse(); // Inn = z(k) - H * xHat(k)- RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation)); // calculate gain matrix // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1 // K(k) = P(k)- * H' * S^-1 RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS); // update estimate with measurement z(k) // xHat(k) = xHat(k)- + K * Inn stateEstimation = stateEstimation.add(kalmanGain.operate(innovation)); // update covariance of prediction error // P(k) = (I - K * H) * P(k)- RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension()); errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance); }
Example #28
Source File: KalmanFilter.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Correct the current state estimate with an actual measurement. * * @param z * the measurement vector * @throws NullArgumentException * if the measurement vector is {@code null} * @throws DimensionMismatchException * if the dimension of the measurement vector does not fit * @throws SingularMatrixException * if the covariance matrix could not be inverted */ public void correct(final RealVector z) throws NullArgumentException, DimensionMismatchException, SingularMatrixException { // sanity checks MathUtils.checkNotNull(z); if (z.getDimension() != measurementMatrix.getRowDimension()) { throw new DimensionMismatchException(z.getDimension(), measurementMatrix.getRowDimension()); } // S = H * P(k) - * H' + R RealMatrix s = measurementMatrix.multiply(errorCovariance) .multiply(measurementMatrixT) .add(measurementModel.getMeasurementNoise()); // invert S // as the error covariance matrix is a symmetric positive // semi-definite matrix, we can use the cholesky decomposition DecompositionSolver solver = new CholeskyDecomposition(s).getSolver(); RealMatrix invertedS = solver.getInverse(); // Inn = z(k) - H * xHat(k)- RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation)); // calculate gain matrix // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1 // K(k) = P(k)- * H' * S^-1 RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS); // update estimate with measurement z(k) // xHat(k) = xHat(k)- + K * Inn stateEstimation = stateEstimation.add(kalmanGain.operate(innovation)); // update covariance of prediction error // P(k) = (I - K * H) * P(k)- RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension()); errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance); }
Example #29
Source File: OmsCurvaturesBivariate.java From hortonmachine with GNU General Public License v3.0 | 5 votes |
/** * Calculates the parameters of a bivariate quadratic equation. * * @param elevationValues the window of points to use. * @return the parameters of the bivariate quadratic equation as [a, b, c, d, e, f] */ private static double[] calculateParameters( final double[][] elevationValues ) { int rows = elevationValues.length; int cols = elevationValues[0].length; int pointsNum = rows * cols; final double[][] xyMatrix = new double[pointsNum][6]; final double[] valueArray = new double[pointsNum]; // TODO check on resolution int index = 0; for( int y = 0; y < rows; y++ ) { for( int x = 0; x < cols; x++ ) { xyMatrix[index][0] = x * x; // x^2 xyMatrix[index][1] = y * y; // y^2 xyMatrix[index][2] = x * y; // xy xyMatrix[index][3] = x; // x xyMatrix[index][4] = y; // y xyMatrix[index][5] = 1; valueArray[index] = elevationValues[y][x]; index++; } } RealMatrix A = MatrixUtils.createRealMatrix(xyMatrix); RealVector z = MatrixUtils.createRealVector(valueArray); DecompositionSolver solver = new RRQRDecomposition(A).getSolver(); RealVector solution = solver.solve(z); // start values for a, b, c, d, e, f, all set to 0.0 final double[] parameters = solution.toArray(); return parameters; }
Example #30
Source File: AbstractEvaluation.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ public RealMatrix getCovariances(double threshold) { // Set up the Jacobian. final RealMatrix j = this.getJacobian(); // Compute transpose(J)J. final RealMatrix jTj = j.transpose().multiply(j); // Compute the covariances matrix. final DecompositionSolver solver = new QRDecomposition(jTj, threshold).getSolver(); return solver.getInverse(); }