Java Code Examples for org.apache.commons.math3.linear.DecompositionSolver#getInverse()

The following examples show how to use org.apache.commons.math3.linear.DecompositionSolver#getInverse() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: LibCommonsMath.java    From systemds with Apache License 2.0 5 votes vote down vote up
/**
 * Function to compute matrix inverse via matrix decomposition.
 * 
 * @param in commons-math3 Array2DRowRealMatrix
 * @return matrix block
 */
private static MatrixBlock computeMatrixInverse(Array2DRowRealMatrix in) {
	if ( !in.isSquare() )
		throw new DMLRuntimeException("Input to inv() must be square matrix -- given: a " + in.getRowDimension() + "x" + in.getColumnDimension() + " matrix.");
	
	QRDecomposition qrdecompose = new QRDecomposition(in);
	DecompositionSolver solver = qrdecompose.getSolver();
	RealMatrix inverseMatrix = solver.getInverse();

	return DataConverter.convertToMatrixBlock(inverseMatrix.getData());
}
 
Example 2
Source File: StatsUtils.java    From incubator-hivemall with Apache License 2.0 5 votes vote down vote up
/**
 * pdf(x, x_hat) = exp(-0.5 * (x-x_hat) * inv(Σ) * (x-x_hat)T) / ( 2π^0.5d * det(Σ)^0.5)
 * 
 * @return value of probabilistic density function
 * @link https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Density_function
 */
public static double pdf(@Nonnull final RealVector x, @Nonnull final RealVector x_hat,
        @Nonnull final RealMatrix sigma) {
    final int dim = x.getDimension();
    Preconditions.checkArgument(x_hat.getDimension() == dim,
        "|x| != |x_hat|, |x|=" + dim + ", |x_hat|=" + x_hat.getDimension());
    Preconditions.checkArgument(sigma.getRowDimension() == dim,
        "|x| != |sigma|, |x|=" + dim + ", |sigma|=" + sigma.getRowDimension());
    Preconditions.checkArgument(sigma.isSquare(), "Sigma is not square matrix");

    LUDecomposition LU = new LUDecomposition(sigma);
    final double detSigma = LU.getDeterminant();
    double denominator = Math.pow(2.d * Math.PI, 0.5d * dim) * Math.pow(detSigma, 0.5d);
    if (denominator == 0.d) { // avoid divide by zero
        return 0.d;
    }

    final RealMatrix invSigma;
    DecompositionSolver solver = LU.getSolver();
    if (solver.isNonSingular() == false) {
        SingularValueDecomposition svd = new SingularValueDecomposition(sigma);
        invSigma = svd.getSolver().getInverse(); // least square solution
    } else {
        invSigma = solver.getInverse();
    }
    //EigenDecomposition eigen = new EigenDecomposition(sigma);
    //double detSigma = eigen.getDeterminant();
    //RealMatrix invSigma = eigen.getSolver().getInverse();

    RealVector diff = x.subtract(x_hat);
    RealVector premultiplied = invSigma.preMultiply(diff);
    double sum = premultiplied.dotProduct(diff);
    double numerator = Math.exp(-0.5d * sum);

    return numerator / denominator;
}
 
Example 3
Source File: MatrixUtils.java    From incubator-hivemall with Apache License 2.0 5 votes vote down vote up
@Nonnull
public static RealMatrix inverse(@Nonnull final RealMatrix m, final boolean exact)
        throws SingularMatrixException {
    LUDecomposition LU = new LUDecomposition(m);
    DecompositionSolver solver = LU.getSolver();
    final RealMatrix inv;
    if (exact || solver.isNonSingular()) {
        inv = solver.getInverse();
    } else {
        SingularValueDecomposition SVD = new SingularValueDecomposition(m);
        inv = SVD.getSolver().getInverse();
    }
    return inv;
}
 
Example 4
Source File: LibCommonsMath.java    From systemds with Apache License 2.0 5 votes vote down vote up
/**
 * Function to compute matrix inverse via matrix decomposition.
 * 
 * @param in commons-math3 Array2DRowRealMatrix
 * @return matrix block
 */
private static MatrixBlock computeMatrixInverse(Array2DRowRealMatrix in) {
	if ( !in.isSquare() )
		throw new DMLRuntimeException("Input to inv() must be square matrix -- given: a " + in.getRowDimension() + "x" + in.getColumnDimension() + " matrix.");
	
	QRDecomposition qrdecompose = new QRDecomposition(in);
	DecompositionSolver solver = qrdecompose.getSolver();
	RealMatrix inverseMatrix = solver.getInverse();

	return DataConverter.convertToMatrixBlock(inverseMatrix.getData());
}
 
Example 5
Source File: AbstractEvaluation.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/** {@inheritDoc} */
public RealMatrix getCovariances(double threshold) {
    // Set up the Jacobian.
    final RealMatrix j = this.getJacobian();

    // Compute transpose(J)J.
    final RealMatrix jTj = j.transpose().multiply(j);

    // Compute the covariances matrix.
    final DecompositionSolver solver
            = new QRDecomposition(jTj, threshold).getSolver();
    return solver.getInverse();
}
 
Example 6
Source File: KalmanFilter.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
 
Example 7
Source File: KalmanFilter.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z the measurement vector
 * @throws DimensionMismatchException if the dimension of the
 * measurement vector does not fit
 * @throws org.apache.commons.math3.linear.SingularMatrixException
 * if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) {
    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
 
Example 8
Source File: KalmanFilter.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
 
Example 9
Source File: KalmanFilter.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z the measurement vector
 * @throws DimensionMismatchException if the dimension of the
 * measurement vector does not fit
 * @throws org.apache.commons.math3.linear.SingularMatrixException
 * if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) {
    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
 
Example 10
Source File: KalmanFilter.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
 
Example 11
Source File: KalmanFilter.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
 
Example 12
Source File: AbstractEvaluation.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/** {@inheritDoc} */
public RealMatrix getCovariances(double threshold) {
    // Set up the Jacobian.
    final RealMatrix j = this.getJacobian();

    // Compute transpose(J)J.
    final RealMatrix jTj = j.transpose().multiply(j);

    // Compute the covariances matrix.
    final DecompositionSolver solver
            = new QRDecomposition(jTj, threshold).getSolver();
    return solver.getInverse();
}
 
Example 13
Source File: InvertMatrix.java    From nd4j with Apache License 2.0 4 votes vote down vote up
/**
 * Calculates pseudo inverse of a matrix using QR decomposition
 * @param arr the array to invert
 * @return the pseudo inverted matrix
 */
public static INDArray pinvert(INDArray arr, boolean inPlace) {

    // TODO : do it natively instead of relying on commons-maths

    RealMatrix realMatrix = CheckUtil.convertToApacheMatrix(arr);
    QRDecomposition decomposition = new QRDecomposition(realMatrix, 0);
    DecompositionSolver solver = decomposition.getSolver();

    if (!solver.isNonSingular()) {
        throw new IllegalArgumentException("invalid array: must be singular matrix");
    }

    RealMatrix pinvRM = solver.getInverse();

    INDArray pseudoInverse = CheckUtil.convertFromApacheMatrix(pinvRM);

    if (inPlace)
        arr.assign(pseudoInverse);
    return pseudoInverse;

}
 
Example 14
Source File: InvertMatrix.java    From deeplearning4j with Apache License 2.0 4 votes vote down vote up
/**
 * Calculates pseudo inverse of a matrix using QR decomposition
 * @param arr the array to invert
 * @return the pseudo inverted matrix
 */
public static INDArray pinvert(INDArray arr, boolean inPlace) {

    // TODO : do it natively instead of relying on commons-maths

    RealMatrix realMatrix = CheckUtil.convertToApacheMatrix(arr);
    QRDecomposition decomposition = new QRDecomposition(realMatrix, 0);
    DecompositionSolver solver = decomposition.getSolver();

    if (!solver.isNonSingular()) {
        throw new IllegalArgumentException("invalid array: must be singular matrix");
    }

    RealMatrix pinvRM = solver.getInverse();

    INDArray pseudoInverse = CheckUtil.convertFromApacheMatrix(pinvRM, arr.dataType());

    if (inPlace)
        arr.assign(pseudoInverse);
    return pseudoInverse;

}