org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException Java Examples
The following examples show how to use
org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: GaussNewtonOptimizer.java From astor with GNU General Public License v2.0 | 5 votes |
@Override protected RealVector solve(final RealMatrix jacobian, final RealVector residuals) { try { final Pair<RealMatrix, RealVector> normalEquation = computeNormalMatrix(jacobian, residuals); final RealMatrix normal = normalEquation.getFirst(); final RealVector jTr = normalEquation.getSecond(); return new CholeskyDecomposition( normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD) .getSolver() .solve(jTr); } catch (NonPositiveDefiniteMatrixException e) { throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e); } }
Example #2
Source File: GaussNewtonOptimizer.java From astor with GNU General Public License v2.0 | 5 votes |
@Override protected RealVector solve(final RealMatrix jacobian, final RealVector residuals) { try { final Pair<RealMatrix, RealVector> normalEquation = computeNormalMatrix(jacobian, residuals); final RealMatrix normal = normalEquation.getFirst(); final RealVector jTr = normalEquation.getSecond(); return new CholeskyDecomposition( normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD) .getSolver() .solve(jTr); } catch (NonPositiveDefiniteMatrixException e) { throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e); } }
Example #3
Source File: CommonsMathSolver.java From elasticsearch-linear-regression with Apache License 2.0 | 5 votes |
@Override public SlopeCoefficients estimateCoefficients(final DerivationEquation eq) throws EstimationException { final double[][] sourceTriangleMatrix = eq.getCovarianceLowerTriangularMatrix(); // Copy matrix and enhance it to a full matrix as expected by CholeskyDecomposition // FIXME: Avoid copy job to speed-up the solving process e.g. by extending the CholeskyDecomposition constructor final int length = sourceTriangleMatrix.length; final double[][] matrix = new double[length][]; for (int i = 0; i < length; i++) { matrix[i] = new double[length]; final double[] s = sourceTriangleMatrix[i]; final double[] t = matrix[i]; for (int j = 0; j <= i; j++) { t[j] = s[j]; } for (int j = i + 1; j < length; j++) { t[j] = sourceTriangleMatrix[j][i]; } } final RealMatrix coefficients = new Array2DRowRealMatrix(matrix, false); try { final DecompositionSolver solver = new CholeskyDecomposition(coefficients).getSolver(); final RealVector constants = new ArrayRealVector(eq.getConstraints(), true); final RealVector solution = solver.solve(constants); return new DefaultSlopeCoefficients(solution.toArray()); } catch (final NonPositiveDefiniteMatrixException e) { throw new EstimationException("Matrix inversion error due to data is linearly dependent", e); } }
Example #4
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #5
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #6
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #7
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #8
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #9
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #10
Source File: Math_11_MultivariateNormalDistribution_t.java From coming with MIT License | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #11
Source File: Math_11_MultivariateNormalDistribution_s.java From coming with MIT License | 4 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Example #12
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Example #13
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Example #14
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * <p> * <b>Note:</b> this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Example #15
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Example #16
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Example #17
Source File: Math_11_MultivariateNormalDistribution_t.java From coming with MIT License | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Example #18
Source File: MultivariateNormalDistribution.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * <p> * <b>Note:</b> this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Example #19
Source File: Math_11_MultivariateNormalDistribution_s.java From coming with MIT License | 3 votes |
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }