Java Code Examples for org.jpmml.converter.PMMLUtil#createApply()
The following examples show how to use
org.jpmml.converter.PMMLUtil#createApply() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: RegexTokenizerConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 6 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ RegexTokenizer transformer = getTransformer(); if(!transformer.getGaps()){ throw new IllegalArgumentException("Expected splitter mode, got token matching mode"); } // End if if(transformer.getMinTokenLength() != 1){ throw new IllegalArgumentException("Expected 1 as minimum token length, got " + transformer.getMinTokenLength() + " as minimum token length"); } Feature feature = encoder.getOnlyFeature(transformer.getInputCol()); Field<?> field = feature.getField(); if(transformer.getToLowercase()){ Apply apply = PMMLUtil.createApply(PMMLFunctions.LOWERCASE, feature.ref()); field = encoder.createDerivedField(FeatureUtil.createName("lowercase", feature), OpType.CATEGORICAL, DataType.STRING, apply); } return Collections.singletonList(new DocumentFeature(encoder, field, transformer.getPattern())); }
Example 2
Source File: TfidfVectorizer.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 6 votes |
@Override public DefineFunction encodeDefineFunction(){ TfidfTransformer transformer = getTransformer(); DefineFunction defineFunction = super.encodeDefineFunction(); Expression expression = defineFunction.getExpression(); Boolean sublinearTf = transformer.getSublinearTf(); if(sublinearTf){ expression = PMMLUtil.createApply(PMMLFunctions.ADD, PMMLUtil.createApply(PMMLFunctions.LN, expression), PMMLUtil.createConstant(1d)); } // End if Boolean useIdf = transformer.getUseIdf(); if(useIdf){ ParameterField weight = new ParameterField(FieldName.create("weight")); defineFunction.addParameterFields(weight); expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, new FieldRef(weight.getName())); } defineFunction.setExpression(expression); return defineFunction; }
Example 3
Source File: EarthConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 6 votes |
static private Apply createHingeFunction(int dir, Feature feature, double cut){ Expression expression; switch(dir){ case -1: expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, PMMLUtil.createConstant(cut), feature.ref()); break; case 1: expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, feature.ref(), PMMLUtil.createConstant(cut)); break; default: throw new IllegalArgumentException(); } return PMMLUtil.createApply(PMMLFunctions.MAX, expression, PMMLUtil.createConstant(0d)); }
Example 4
Source File: ImputerUtil.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 6 votes |
static public Feature encodeIndicatorFeature(Feature feature, Object missingValue, SkLearnEncoder encoder){ Expression expression = feature.ref(); if(missingValue != null){ expression = PMMLUtil.createApply(PMMLFunctions.EQUAL, expression, PMMLUtil.createConstant(missingValue, feature.getDataType())); } else { expression = PMMLUtil.createApply(PMMLFunctions.ISMISSING, expression); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("missing_indicator", feature), OpType.CATEGORICAL, DataType.BOOLEAN, expression); return new BooleanFeature(encoder, derivedField); }
Example 5
Source File: StringNormalizer.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ String function = getFunction(); Boolean trimBlanks = getTrimBlanks(); if(function == null && !trimBlanks){ return features; } List<Feature> result = new ArrayList<>(); for(Feature feature : features){ Expression expression = feature.ref(); if(function != null){ expression = PMMLUtil.createApply(translateFunction(function), expression); } // End if if(trimBlanks){ expression = PMMLUtil.createApply(PMMLFunctions.TRIMBLANKS, expression); } Field<?> field = encoder.toCategorical(feature.getName(), Collections.emptyList()); // XXX: Should have been set by the previous transformer field.setDataType(DataType.STRING); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("normalize", feature), OpType.CATEGORICAL, DataType.STRING, expression); feature = new StringFeature(encoder, derivedField); result.add(feature); } return result; }
Example 6
Source File: PreProcessEncoder.java From jpmml-r with GNU Affero General Public License v3.0 | 5 votes |
private Expression encodeExpression(FieldName name, Expression expression){ List<Double> ranges = this.ranges.get(name); if(ranges != null){ Double min = ranges.get(0); Double max = ranges.get(1); if(!ValueUtil.isZero(min)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(min)); } // End if if(!ValueUtil.isOne(max - min)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(max - min)); } } Double mean = this.mean.get(name); if(mean != null && !ValueUtil.isZero(mean)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(mean)); } Double std = this.std.get(name); if(std != null && !ValueUtil.isOne(std)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(std)); } Double median = this.median.get(name); if(median != null){ expression = PMMLUtil.createApply(PMMLFunctions.IF) .addExpressions(PMMLUtil.createApply(PMMLFunctions.ISNOTMISSING, new FieldRef(name))) .addExpressions(expression, PMMLUtil.createConstant(median)); } return expression; }
Example 7
Source File: MVRConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 5 votes |
private void scaleFeatures(RExpEncoder encoder){ RGenericVector mvr = getObject(); RDoubleVector scale = mvr.getDoubleElement("scale", false); if(scale == null){ return; } List<Feature> features = encoder.getFeatures(); if(scale.size() != features.size()){ throw new IllegalArgumentException(); } for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Double factor = scale.getValue(i); if(ValueUtil.isOne(factor)){ continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); Apply apply = PMMLUtil.createApply(PMMLFunctions.DIVIDE, continuousFeature.ref(), PMMLUtil.createConstant(factor)); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("scale", feature), OpType.CONTINUOUS, DataType.DOUBLE, apply); features.set(i, new ContinuousFeature(encoder, derivedField)); } }
Example 8
Source File: OneClassSVM.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
@Override public SupportVectorMachineModel encodeModel(Schema schema){ Transformation outlier = new OutlierTransformation(){ @Override public Expression createExpression(FieldRef fieldRef){ return PMMLUtil.createApply(PMMLFunctions.LESSOREQUAL, fieldRef, PMMLUtil.createConstant(0d)); } }; SupportVectorMachineModel supportVectorMachineModel = super.encodeModel(schema) .setOutput(ModelUtil.createPredictedOutput(FieldName.create("decisionFunction"), OpType.CONTINUOUS, DataType.DOUBLE, outlier)); Output output = supportVectorMachineModel.getOutput(); List<OutputField> outputFields = output.getOutputFields(); if(outputFields.size() != 2){ throw new IllegalArgumentException(); } OutputField decisionFunctionOutputField = outputFields.get(0); if(!decisionFunctionOutputField.isFinalResult()){ decisionFunctionOutputField.setFinalResult(true); } return supportVectorMachineModel; }
Example 9
Source File: StandardScalerModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ StandardScalerModel transformer = getTransformer(); Vector mean = transformer.mean(); Vector std = transformer.std(); boolean withMean = transformer.getWithMean(); boolean withStd = transformer.getWithStd(); List<Feature> features = encoder.getFeatures(transformer.getInputCol()); if(withMean){ SchemaUtil.checkSize(mean.size(), features); } // End if if(withStd){ SchemaUtil.checkSize(std.size(), features); } List<Feature> result = new ArrayList<>(); for(int i = 0, length = features.size(); i < length; i++){ Feature feature = features.get(i); FieldName name = formatName(transformer, i, length); Expression expression = null; if(withMean){ double meanValue = mean.apply(i); if(!ValueUtil.isZero(meanValue)){ ContinuousFeature continuousFeature = feature.toContinuousFeature(); expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, continuousFeature.ref(), PMMLUtil.createConstant(meanValue)); } } // End if if(withStd){ double stdValue = std.apply(i); if(!ValueUtil.isOne(stdValue)){ Double factor = (1d / stdValue); if(expression != null){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(factor)); } else { feature = new ProductFeature(encoder, feature, factor){ @Override public ContinuousFeature toContinuousFeature(){ Supplier<Apply> applySupplier = () -> { Feature feature = getFeature(); Number factor = getFactor(); return PMMLUtil.createApply(PMMLFunctions.MULTIPLY, (feature.toContinuousFeature()).ref(), PMMLUtil.createConstant(factor)); }; return toContinuousFeature(name, DataType.DOUBLE, applySupplier); } }; } } } // End if if(expression != null){ DerivedField derivedField = encoder.createDerivedField(name, OpType.CONTINUOUS, DataType.DOUBLE, expression); result.add(new ContinuousFeature(encoder, derivedField)); } else { result.add(feature); } } return result; }
Example 10
Source File: Binarizer.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Number threshold = getThreshold(); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name <= threshold) ? 0 : 1" Apply apply = PMMLUtil.createApply(PMMLFunctions.THRESHOLD, continuousFeature.ref(), PMMLUtil.createConstant(threshold)); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("binarizer", continuousFeature), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 11
Source File: StandardScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Boolean withMean = getWithMean(); Boolean withStd = getWithStd(); List<? extends Number> mean = (withMean ? getMean() : null); List<? extends Number> std = (withStd ? getStd() : null); if(mean == null && std == null){ return features; } ClassDictUtil.checkSize(features, mean, std); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number meanValue = (withMean ? mean.get(i) : 0d); Number stdValue = (withStd ? std.get(i) : 1d); if(ValueUtil.isZero(meanValue) && ValueUtil.isOne(stdValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name - mean) / std" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(meanValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(meanValue)); } // End if if(!ValueUtil.isOne(stdValue)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(stdValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("standard_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 12
Source File: MinMaxScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ List<? extends Number> min = getMin(); List<? extends Number> scale = getScale(); ClassDictUtil.checkSize(features, min, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number minValue = min.get(i); Number scaleValue = scale.get(i); if(ValueUtil.isOne(scaleValue) && ValueUtil.isZero(minValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name * scale) + min" Expression expression = continuousFeature.ref(); if(!ValueUtil.isOne(scaleValue)){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(scaleValue)); } // End if if(!ValueUtil.isZero(minValue)){ expression = PMMLUtil.createApply(PMMLFunctions.ADD, expression, PMMLUtil.createConstant(minValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("mix_max_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 13
Source File: RobustScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Boolean withCentering = getWithCentering(); Boolean withScaling = getWithScaling(); List<? extends Number> center = (withCentering ? getCenter() : null); List<? extends Number> scale = (withScaling ? getScale() : null); if(center == null && scale == null){ return features; } ClassDictUtil.checkSize(features, center, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number centerValue = (withCentering ? center.get(i) : 0d); Number scaleValue = (withScaling ? scale.get(i) : 1d); if(ValueUtil.isZero(centerValue) && ValueUtil.isOne(scaleValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name - center) / scale" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(centerValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(centerValue)); } // End if if(!ValueUtil.isOne(scaleValue)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(scaleValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("robust_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 14
Source File: CountVectorizer.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
public Apply encodeApply(String function, Feature feature, int index, String term){ Constant constant = PMMLUtil.createConstant(term, DataType.STRING); return PMMLUtil.createApply(function, feature.ref(), constant); }
Example 15
Source File: SVMConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
private void scaleFeatures(RExpEncoder encoder){ RGenericVector svm = getObject(); RDoubleVector sv = svm.getDoubleElement("SV"); RBooleanVector scaled = svm.getBooleanElement("scaled"); RGenericVector xScale = svm.getGenericElement("x.scale"); RStringVector rowNames = sv.dimnames(0); RStringVector columnNames = sv.dimnames(1); List<Feature> features = encoder.getFeatures(); if((scaled.size() != columnNames.size()) || (scaled.size() != features.size())){ throw new IllegalArgumentException(); } RDoubleVector xScaledCenter = xScale.getDoubleElement("scaled:center"); RDoubleVector xScaledScale = xScale.getDoubleElement("scaled:scale"); for(int i = 0; i < columnNames.size(); i++){ String columnName = columnNames.getValue(i); if(!scaled.getValue(i)){ continue; } Feature feature = features.get(i); Double center = xScaledCenter.getElement(columnName); Double scale = xScaledScale.getElement(columnName); if(ValueUtil.isZero(center) && ValueUtil.isOne(scale)){ continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(center)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(center)); } // End if if(!ValueUtil.isOne(scale)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(scale)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("scale", feature), OpType.CONTINUOUS, DataType.DOUBLE, expression); features.set(i, new ContinuousFeature(encoder, derivedField)); } }
Example 16
Source File: SVMConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
@Override public SupportVectorMachineModel encodeModel(Schema schema){ RGenericVector svm = getObject(); RDoubleVector type = svm.getDoubleElement("type"); RDoubleVector kernel = svm.getDoubleElement("kernel"); RDoubleVector degree = svm.getDoubleElement("degree"); RDoubleVector gamma = svm.getDoubleElement("gamma"); RDoubleVector coef0 = svm.getDoubleElement("coef0"); RGenericVector yScale = svm.getGenericElement("y.scale"); RIntegerVector nSv = svm.getIntegerElement("nSV"); RDoubleVector sv = svm.getDoubleElement("SV"); RDoubleVector rho = svm.getDoubleElement("rho"); RDoubleVector coefs = svm.getDoubleElement("coefs"); Type svmType = Type.values()[ValueUtil.asInt(type.asScalar())]; Kernel svmKernel = Kernel.values()[ValueUtil.asInt(kernel.asScalar())]; org.dmg.pmml.support_vector_machine.Kernel pmmlKernel = svmKernel.createKernel(degree.asScalar(), gamma.asScalar(), coef0.asScalar()); SupportVectorMachineModel supportVectorMachineModel; switch(svmType){ case C_CLASSIFICATION: case NU_CLASSIFICATION: { supportVectorMachineModel = encodeClassification(pmmlKernel, sv, nSv, rho, coefs, schema); } break; case ONE_CLASSIFICATION: { Transformation outlier = new OutlierTransformation(){ @Override public Expression createExpression(FieldRef fieldRef){ return PMMLUtil.createApply(PMMLFunctions.LESSOREQUAL, fieldRef, PMMLUtil.createConstant(0d)); } }; supportVectorMachineModel = encodeRegression(pmmlKernel, sv, rho, coefs, schema) .setOutput(ModelUtil.createPredictedOutput(FieldName.create("decisionFunction"), OpType.CONTINUOUS, DataType.DOUBLE, outlier)); if(yScale != null && yScale.size() > 0){ throw new IllegalArgumentException(); } } break; case EPS_REGRESSION: case NU_REGRESSION: { supportVectorMachineModel = encodeRegression(pmmlKernel, sv, rho, coefs, schema); if(yScale != null && yScale.size() > 0){ RDoubleVector yScaledCenter = yScale.getDoubleElement("scaled:center"); RDoubleVector yScaledScale = yScale.getDoubleElement("scaled:scale"); supportVectorMachineModel.setTargets(ModelUtil.createRescaleTargets(-1d * yScaledScale.asScalar(), yScaledCenter.asScalar(), (ContinuousLabel)schema.getLabel())); } } break; default: throw new IllegalArgumentException(); } return supportVectorMachineModel; }
Example 17
Source File: MaxAbsScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 3 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ List<? extends Number> scale = getScale(); ClassDictUtil.checkSize(features, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number value = scale.get(i); if(ValueUtil.isOne(value)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "$name / scale" Apply apply = PMMLUtil.createApply(PMMLFunctions.DIVIDE, continuousFeature.ref(), PMMLUtil.createConstant(value)); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("max_abs_scaler", continuousFeature), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 18
Source File: TokenizerConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 3 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ Tokenizer transformer = getTransformer(); Feature feature = encoder.getOnlyFeature(transformer.getInputCol()); Apply apply = PMMLUtil.createApply(PMMLFunctions.LOWERCASE, feature.ref()); DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("lowercase", feature), OpType.CATEGORICAL, DataType.STRING, apply); return Collections.singletonList(new DocumentFeature(encoder, derivedField, "\\s+")); }
Example 19
Source File: TruncatedSVD.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 2 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ int[] shape = getComponentsShape(); int numberOfComponents = shape[0]; int numberOfFeatures = shape[1]; List<? extends Number> components = getComponents(); ClassDictUtil.checkSize(numberOfFeatures, features); String id = "svd@" + String.valueOf(TruncatedSVD.SEQUENCE.getAndIncrement()); List<Feature> result = new ArrayList<>(); for(int i = 0; i < numberOfComponents; i++){ List<? extends Number> component = CMatrixUtil.getRow(components, numberOfComponents, numberOfFeatures, i); Apply apply = PMMLUtil.createApply(PMMLFunctions.SUM); for(int j = 0; j < numberOfFeatures; j++){ Feature feature = features.get(j); Number componentValue = component.get(j); if(ValueUtil.isOne(componentValue)){ apply.addExpressions(feature.ref()); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "$name[i] * component[i]" Expression expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, continuousFeature.ref(), PMMLUtil.createConstant(componentValue)); apply.addExpressions(expression); } DerivedField derivedField = encoder.createDerivedField(FieldName.create(id + "[" + String.valueOf(i) + "]"), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 20
Source File: PCA.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 2 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ int[] shape = getComponentsShape(); int numberOfComponents = shape[0]; int numberOfFeatures = shape[1]; List<? extends Number> components = getComponents(); List<? extends Number> mean = getMean(); ClassDictUtil.checkSize(numberOfFeatures, features, mean); Boolean whiten = getWhiten(); List<? extends Number> explainedVariance = (whiten ? getExplainedVariance() : null); ClassDictUtil.checkSize(numberOfComponents, explainedVariance); String id = "pca@" + String.valueOf(PCA.SEQUENCE.getAndIncrement()); List<Feature> result = new ArrayList<>(); for(int i = 0; i < numberOfComponents; i++){ List<? extends Number> component = CMatrixUtil.getRow(components, numberOfComponents, numberOfFeatures, i); Apply apply = PMMLUtil.createApply(PMMLFunctions.SUM); for(int j = 0; j < numberOfFeatures; j++){ Feature feature = features.get(j); Number meanValue = mean.get(j); Number componentValue = component.get(j); if(ValueUtil.isZero(meanValue) && ValueUtil.isOne(componentValue)){ apply.addExpressions(feature.ref()); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name[i] - mean[i]) * component[i]" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(meanValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(meanValue)); } // End if if(!ValueUtil.isOne(componentValue)){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(componentValue)); } apply.addExpressions(expression); } if(whiten){ Number explainedVarianceValue = explainedVariance.get(i); if(!ValueUtil.isOne(explainedVarianceValue)){ apply = PMMLUtil.createApply(PMMLFunctions.DIVIDE, apply, PMMLUtil.createConstant(Math.sqrt(ValueUtil.asDouble(explainedVarianceValue)))); } } DerivedField derivedField = encoder.createDerivedField(FieldName.create(id + "[" + String.valueOf(i) + "]"), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }