Java Code Examples for org.neuroph.core.data.DataSet#createFromFile()
The following examples show how to use
org.neuroph.core.data.DataSet#createFromFile() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MomentumBackPropagationTest.java From NeurophFramework with Apache License 2.0 | 6 votes |
@Before public void setUp() { instance = new MomentumBackpropagation(); instance.setMomentum(0.5); xorDataSet = new DataSet(2, 1); xorDataSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); xorDataSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); xorDataSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); xorDataSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); maxError = 0.01; instance.setLearningRate(0.5); instance.setMaxError(maxError); String inputFileName = "src/test/resources/iris_normalized.txt"; irisDataSet = DataSet.createFromFile(inputFileName, 4, 3, ",", false); }
Example 2
Source File: GRUStockPricePredictionExample.java From NeurophFramework with Apache License 2.0 | 6 votes |
private static void trainNetwork() { DataSet trainingSet = DataSet.createFromFile("google-stock-price-train.csv", 3, 1, ","); DataSet testSet = DataSet.createFromFile("google-stock-price-test.csv", 3, 1, ","); SequenceModeller sequenceModeller = new SequenceModeller(trainingSet); int inputsCount = sequenceModeller.getCharIndex().size(); int hiddenCount = 100; int maxIterations = 100; double learningRate = 0.8; System.out.println("Creating neural network..."); RNN gru = new GRU(inputsCount, hiddenCount, new MatrixInitializer(MatrixInitializer.Type.Uniform, 0.1, 0, 0)); BackPropagationThroughTime bptt = new GRUBackPropagationThroughTime(); bptt.setLearningRate(learningRate); gru.setLearningRule(bptt); System.out.println("Training network..."); bptt.learn(trainingSet, maxIterations); System.out.println("Training completed."); testNetwork(gru, testSet); }
Example 3
Source File: ClassifierEvaluationSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
public static void main(String[] args) { Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); String[] classNames = {"Virginica", "Setosa", "Versicolor"}; MultiLayerPerceptron neuralNet = (MultiLayerPerceptron) NeuralNetwork.createFromFile("irisNet.nnet"); DataSet dataSet = DataSet.createFromFile("data_sets/iris_data_normalised.txt", 4, 3, ","); evaluation.addEvaluator(new ClassifierEvaluator.MultiClass(classNames)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.MultiClass.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example 4
Source File: TestTimeSeries.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void train() { // get the path to file with data String inputFileName = "C:\\timeseries\\BSW15"; // create MultiLayerPerceptron neural network neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, 5, 10, 1); MomentumBackpropagation learningRule = (MomentumBackpropagation)neuralNet.getLearningRule(); learningRule.setLearningRate(0.2); learningRule.setMomentum(0.5); // learningRule.addObserver(this); learningRule.addListener(this); // create training set from file trainingSet = DataSet.createFromFile(inputFileName, 5, 1, "\t", false); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Done training."); }
Example 5
Source File: IrisFlowers.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void run() throws InterruptedException, ExecutionException { System.out.println("Creating training set..."); // get path to training set String dataSetFile = "data_sets/iris_data_normalised.txt"; int inputsCount = 4; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); // dataSet.setColumnNames(new String[]{"sepal.length", "sepal.width", "petal.length", "petal.width", "setosa", "versicolor", "virginica"}); dataSet.setColumnNames(new String[]{"setosa", "versicolor", "virginica"}); dataSet.shuffle(); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 5, outputsCount); String[] classLabels = new String[]{"setosa", "versicolor", "virginica"}; neuralNet.setOutputLabels(classLabels); KFoldCrossValidation crossVal = new KFoldCrossValidation(neuralNet, dataSet, 5); EvaluationResult totalResult= crossVal.run(); List<FoldResult> cflist= crossVal.getResultsByFolds(); }
Example 6
Source File: DiabetesSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { String dataSetFile = "data_sets/diabetes.txt"; int inputsCount = 8; int outputsCount = 1; // Create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); // Creatinig training set (70%) and test set (30%) DataSet[] trainTestSplit = dataSet.split(0.7, 0.3); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // Normalizing training and test set Normalizer normalizer = new MaxNormalizer(trainingSet); normalizer.normalize(trainingSet); normalizer.normalize(testSet); System.out.println("Creating neural network..."); //Create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 20, 10, outputsCount); //attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); learningRule.setLearningRate(0.6); learningRule.setMaxError(0.07); learningRule.setMaxIterations(100000); System.out.println("Training network..."); //train the network with training set neuralNet.learn(trainingSet); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, testSet); }
Example 7
Source File: RunExampleEvaluation.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { NeuralNetwork nnet = NeuralNetwork.createFromFile("irisNet.nnet"); DataSet dataSet = DataSet.createFromFile("data_sets/iris_data_normalised.txt", 4, 3, ","); Evaluation.runFullEvaluation(nnet, dataSet); }
Example 8
Source File: AnimalsClassificationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/animals_data.txt"; int inputsCount = 20; int outputsCount = 7; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", true); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 22, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetAnimals.nnet"); System.out.println("Done."); }
Example 9
Source File: BalanceScaleSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/balance_scale_data.txt"; int inputsCount = 20; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 22, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetBalanceScale.nnet"); System.out.println("Done."); }
Example 10
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Before public void setUp() { instance = new BackPropagation(); xorDataSet = new DataSet(2, 1); xorDataSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); xorDataSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); xorDataSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); xorDataSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); maxError = 0.01; instance.setLearningRate(0.5); instance.setMaxError(maxError); String inputFileName = "src/test/resources/iris_normalized.txt"; irisDataSet = DataSet.createFromFile(inputFileName, 4, 3, ",", false); }
Example 11
Source File: Banknote.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/databanknote.txt"; int inputsCount = 4; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false); DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 1, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event) -> { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); }
Example 12
Source File: BostonHousePrice.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/bostonhouse.txt"; int inputsCount = 13; int outputsCount = 1; // create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); // split data into training and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize data Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 2, 2, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(event -> { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); }
Example 13
Source File: BrestCancerSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training and test set from file..."); String dataSetFile = "data_sets/breast cancer.txt"; int inputsCount = 30; int outputsCount = 2; // use onlz one output - binarz classification, transform dat aset //Create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); //Creatinig training set (70%) and test set (30%) DataSet[] trainTestSplit = dataSet.split(0.7, 0.3); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; //Normalizing data set Normalizer normalizer = new MaxNormalizer(trainingSet); normalizer.normalize(trainingSet); normalizer.normalize(testSet); System.out.println("Creating neural network..."); //Create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 16, outputsCount); //attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); learningRule.setLearningRate(0.3); learningRule.setMaxError(0.001); learningRule.setMaxIterations(5000); System.out.println("Training network..."); //train the network with training set neuralNet.learn(trainingSet); System.out.println("Testing network...\n\n"); testNeuralNetwork(neuralNet, testSet); System.out.println("Done."); System.out.println("**************************************************"); }
Example 14
Source File: SwedishAutoInsurance.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFileName = "data_sets/autodata.txt"; int inputsCount = 1; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFileName, inputsCount, outputsCount, ",", false); // split data into train and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize training and test set Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); Adaline neuralNet = new Adaline(1); neuralNet.setLearningRule(new LMS()); LMS learningRule = (LMS) neuralNet.getLearningRule(); learningRule.addListener(this); // train the network with training set System.out.println("Training network..."); neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 15
Source File: PimaIndiansDiabetes.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/pimadata.txt"; int inputsCount = 8; int outputsCount = 1; // create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", false); // split data into training and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize training and test set Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 15, 5, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event) -> { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.03); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); }
Example 16
Source File: Banknote.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String trainingSetFileName = "data_sets/databanknote.txt"; int inputsCount = 4; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, ",", false); DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 1, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 17
Source File: BostonHousePrice.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String trainingSetFileName = "data_sets/bostonhouse.txt"; int inputsCount = 13; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, ","); DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize data Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 2, 2, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 18
Source File: IonosphereSample2.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training and test set from file..."); String dataSetFile = "data_sets/ionosphere.csv"; int inputsCount = 34; int outputsCount = 1; //Create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); dataSet.shuffle(); //Normalizing data set Normalizer normalizer = new MaxNormalizer(dataSet); normalizer.normalize(dataSet); //Creatinig training set (70%) and test set (30%) DataSet[] trainingAndTestSet = dataSet.createTrainingAndTestSubsets(70, 30); DataSet trainingSet = trainingAndTestSet[0]; DataSet testSet = trainingAndTestSet[1]; // ovde ubaci u petlju sa hidden neuronima i learning rates System.out.println("Creating neural network..."); //Create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 10, 8, outputsCount); //attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); learningRule.setLearningRate(0.4); learningRule.setMaxError(0.01); learningRule.setMaxIterations(10000); System.out.println("Training network..."); //train the network with training set neuralNet.learn(trainingSet); // System.out.println("Testing network...\n\n"); // testNeuralNetwork(neuralNet, testSet); System.out.println("Done."); System.out.println("**************************************************"); // } }
Example 19
Source File: ShuttleLandingControlSample.java From NeurophFramework with Apache License 2.0 | 3 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/shuttle_landing_control_data.txt"; int inputsCount = 15; int outputsCount = 2; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 16, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetShuttle.nnet"); System.out.println("Done."); }
Example 20
Source File: ForestFiresSample.java From NeurophFramework with Apache License 2.0 | 3 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/forest_fires_data.txt"; int inputsCount = 29; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 25, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetForestFires.nnet"); System.out.println("Done."); }