Java Code Examples for org.neuroph.core.data.DataSet#setColumnNames()
The following examples show how to use
org.neuroph.core.data.DataSet#setColumnNames() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: IrisFlowers.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void run() throws InterruptedException, ExecutionException { System.out.println("Creating training set..."); // get path to training set String dataSetFile = "data_sets/iris_data_normalised.txt"; int inputsCount = 4; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); // dataSet.setColumnNames(new String[]{"sepal.length", "sepal.width", "petal.length", "petal.width", "setosa", "versicolor", "virginica"}); dataSet.setColumnNames(new String[]{"setosa", "versicolor", "virginica"}); dataSet.shuffle(); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 5, outputsCount); String[] classLabels = new String[]{"setosa", "versicolor", "virginica"}; neuralNet.setOutputLabels(classLabels); KFoldCrossValidation crossVal = new KFoldCrossValidation(neuralNet, dataSet, 5); EvaluationResult totalResult= crossVal.run(); List<FoldResult> cflist= crossVal.getResultsByFolds(); }
Example 2
Source File: SubSampling.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public DataSet[] sample(DataSet dataSet) { // if object was initializes by specifying numParts calculate subSetSizes so all subsets are equally sized if (subSetSizes == null) { final double singleSubSetSize = 1.0d / numSubSets; subSetSizes = new double[numSubSets]; for (int i = 0; i < numSubSets; i++) { subSetSizes[i] = singleSubSetSize; } } // create list of data sets to return List<DataSet> subSets = new ArrayList<>(); // shuffle dataset in order to randomize rows that will be used to fill subsets dataSet.shuffle(); int idxCounter = 0; // index of main data set for (int subSetIdx = 0; subSetIdx < numSubSets; subSetIdx++) { // create new subset DataSet newSubSet = new DataSet(dataSet.getInputSize(), dataSet.getOutputSize()); // cop column names if there are any newSubSet.setColumnNames(dataSet.getColumnNames()); // fill subset with rows long subSetSize = Math.round(subSetSizes[subSetIdx] * dataSet.size()); // calculate size of the current subset for (int i = 0; i < subSetSize; i++) { if (idxCounter >= dataSet.size()) { break; } newSubSet.add(dataSet.getRowAt(idxCounter)); idxCounter++; } // add current subset to list that will be returned subSets.add(newSubSet); } return subSets.toArray(new DataSet[numSubSets]); }