Java Code Examples for cern.colt.matrix.DoubleMatrix2D#getQuick()
The following examples show how to use
cern.colt.matrix.DoubleMatrix2D#getQuick() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: ComplexSubstitutionModel.java From beast-mcmc with GNU Lesser General Public License v2.1 | 6 votes |
private static DoubleMatrix2D blockDiagonalExponential(double distance, DoubleMatrix2D mat) { for (int i = 0; i < mat.rows(); i++) { if ((i + 1) < mat.rows() && mat.getQuick(i, i + 1) != 0) { double a = mat.getQuick(i, i); double b = mat.getQuick(i, i + 1); double expat = Math.exp(distance * a); double cosbt = Math.cos(distance * b); double sinbt = Math.sin(distance * b); mat.setQuick(i, i, expat * cosbt); mat.setQuick(i + 1, i + 1, expat * cosbt); mat.setQuick(i, i + 1, expat * sinbt); mat.setQuick(i + 1, i, -expat * sinbt); i++; // processed two entries in loop } else mat.setQuick(i, i, Math.exp(distance * mat.getQuick(i, i))); // 1x1 block } return mat; }
Example 2
Source File: Statistic.java From database with GNU General Public License v2.0 | 6 votes |
/** * Modifies the given covariance matrix to be a correlation matrix (in-place). * The correlation matrix is a square, symmetric matrix consisting of nothing but correlation coefficients. * The rows and the columns represent the variables, the cells represent correlation coefficients. * The diagonal cells (i.e. the correlation between a variable and itself) will equal 1, for the simple reason that the correlation coefficient of a variable with itself equals 1. * The correlation of two column vectors x and y is given by <tt>corr(x,y) = cov(x,y) / (stdDev(x)*stdDev(y))</tt> (Pearson's correlation coefficient). * A correlation coefficient varies between -1 (for a perfect negative relationship) to +1 (for a perfect positive relationship). * See the <A HREF="http://www.cquest.utoronto.ca/geog/ggr270y/notes/not05efg.html"> math definition</A> * and <A HREF="http://www.stat.berkeley.edu/users/stark/SticiGui/Text/gloss.htm#correlation_coef"> another def</A>. * Compares two column vectors at a time. Use dice views to compare two row vectors at a time. * * @param covariance a covariance matrix, as, for example, returned by method {@link #covariance(DoubleMatrix2D)}. * @return the modified covariance, now correlation matrix (for convenience only). */ public static DoubleMatrix2D correlation(DoubleMatrix2D covariance) { for (int i=covariance.columns(); --i >= 0; ) { for (int j=i; --j >= 0; ) { double stdDev1 = Math.sqrt(covariance.getQuick(i,i)); double stdDev2 = Math.sqrt(covariance.getQuick(j,j)); double cov = covariance.getQuick(i,j); double corr = cov / (stdDev1*stdDev2); covariance.setQuick(i,j,corr); covariance.setQuick(j,i,corr); // symmetric } } for (int i=covariance.columns(); --i >= 0; ) covariance.setQuick(i,i,1); return covariance; }
Example 3
Source File: Statistic.java From jAudioGIT with GNU Lesser General Public License v2.1 | 6 votes |
/** * Modifies the given covariance matrix to be a correlation matrix (in-place). * The correlation matrix is a square, symmetric matrix consisting of nothing but correlation coefficients. * The rows and the columns represent the variables, the cells represent correlation coefficients. * The diagonal cells (i.e. the correlation between a variable and itself) will equal 1, for the simple reason that the correlation coefficient of a variable with itself equals 1. * The correlation of two column vectors x and y is given by <tt>corr(x,y) = cov(x,y) / (stdDev(x)*stdDev(y))</tt> (Pearson's correlation coefficient). * A correlation coefficient varies between -1 (for a perfect negative relationship) to +1 (for a perfect positive relationship). * See the <A HREF="http://www.cquest.utoronto.ca/geog/ggr270y/notes/not05efg.html"> math definition</A> * and <A HREF="http://www.stat.berkeley.edu/users/stark/SticiGui/Text/gloss.htm#correlation_coef"> another def</A>. * Compares two column vectors at a time. Use dice views to compare two row vectors at a time. * * @param covariance a covariance matrix, as, for example, returned by method {@link #covariance(DoubleMatrix2D)}. * @return the modified covariance, now correlation matrix (for convenience only). */ public static DoubleMatrix2D correlation(DoubleMatrix2D covariance) { for (int i=covariance.columns(); --i >= 0; ) { for (int j=i; --j >= 0; ) { double stdDev1 = Math.sqrt(covariance.getQuick(i,i)); double stdDev2 = Math.sqrt(covariance.getQuick(j,j)); double cov = covariance.getQuick(i,j); double corr = cov / (stdDev1*stdDev2); covariance.setQuick(i,j,corr); covariance.setQuick(j,i,corr); // symmetric } } for (int i=covariance.columns(); --i >= 0; ) covariance.setQuick(i,i,1); return covariance; }
Example 4
Source File: SeqBlas.java From jAudioGIT with GNU Lesser General Public License v2.1 | 6 votes |
public void dsymv(boolean isUpperTriangular, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y) { if (isUpperTriangular) A = A.viewDice(); Property.DEFAULT.checkSquare(A); int size = A.rows(); if (size != x.size() || size!=y.size()) { throw new IllegalArgumentException(A.toStringShort() + ", " + x.toStringShort() + ", " + y.toStringShort()); } DoubleMatrix1D tmp = x.like(); for (int i = 0; i < size; i++) { double sum = 0; for (int j = 0; j <= i; j++) { sum += A.getQuick(i,j) * x.getQuick(j); } for (int j = i + 1; j < size; j++) { sum += A.getQuick(j,i) * x.getQuick(j); } tmp.setQuick(i, alpha * sum + beta * y.getQuick(i)); } y.assign(tmp); }
Example 5
Source File: MinVolEllipse.java From OSPREY3 with GNU General Public License v2.0 | 6 votes |
static DoubleMatrix1D diagMult(DoubleMatrix2D A, DoubleMatrix2D B){ //Return the diagonal of the product of two matrices //A^T and B should have the same dimensions int m = A.rows(); int n = A.columns(); if(B.rows()!=n || B.columns()!=m){ throw new Error("Size mismatch in diagMult: A is "+m+"x"+n+ ", B is "+B.rows()+"x"+B.columns()); } DoubleMatrix1D ans = DoubleFactory1D.dense.make(m); for(int i=0; i<m; i++){ double s = 0; for(int k=0; k<n; k++) s += A.getQuick(i, k)*B.getQuick(k, i); ans.setQuick(i,s); } return ans; }
Example 6
Source File: MinVolEllipse.java From OSPREY3 with GNU General Public License v2.0 | 6 votes |
static DoubleMatrix2D QuQt(DoubleMatrix2D Q, DoubleMatrix1D u){ //Return matrix product of Q * diagonal version of u * Q^T //answer = \sum_i ( u_i * q_i * q_i') is a (d+1)x(d+1) matrix int m = Q.rows(); int n = Q.columns(); if(u.size()!=n){ throw new Error("Size mismatch in QuQt: "+n+" columns in Q, u length="+u.size()); } DoubleMatrix2D ans = DoubleFactory2D.dense.make(m,m); for(int i=0; i<m; i++){ for(int j=0; j<m; j++){ double s = 0; for(int k=0; k<n; k++) s += Q.getQuick(i,k)*Q.getQuick(j,k)*u.get(k); ans.setQuick(i, j, s); } } return ans; }
Example 7
Source File: Property.java From jAudioGIT with GNU Lesser General Public License v2.1 | 6 votes |
/** * Returns whether both given matrices <tt>A</tt> and <tt>B</tt> are equal. * The result is <tt>true</tt> if <tt>A==B</tt>. * Otherwise, the result is <tt>true</tt> if and only if both arguments are <tt>!= null</tt>, * have the same number of columns and rows and * <tt>! (Math.abs(A[row,col] - B[row,col]) > tolerance())</tt> holds for all coordinates. * @param A the first matrix to compare. * @param B the second matrix to compare. * @return <tt>true</tt> if both matrices are equal; * <tt>false</tt> otherwise. */ public boolean equals(DoubleMatrix2D A, DoubleMatrix2D B) { if (A==B) return true; if (! (A != null && B != null)) return false; int rows = A.rows(); int columns = A.columns(); if (columns != B.columns() || rows != B.rows()) return false; double epsilon = tolerance(); for (int row=rows; --row >= 0;) { for (int column=columns; --column >= 0;) { //if (!(A.getQuick(row,column) == B.getQuick(row,column))) return false; //if (Math.abs((A.getQuick(row,column) - B.getQuick(row,column)) > epsilon) return false; double x = A.getQuick(row,column); double value = B.getQuick(row,column); double diff = Math.abs(value - x); if ((diff!=diff) && ((value!=value && x!=x) || value==x)) diff = 0; if (!(diff <= epsilon)) return false; } } return true; }
Example 8
Source File: Property.java From database with GNU General Public License v2.0 | 6 votes |
/** * Returns whether both given matrices <tt>A</tt> and <tt>B</tt> are equal. * The result is <tt>true</tt> if <tt>A==B</tt>. * Otherwise, the result is <tt>true</tt> if and only if both arguments are <tt>!= null</tt>, * have the same number of columns and rows and * <tt>! (Math.abs(A[row,col] - B[row,col]) > tolerance())</tt> holds for all coordinates. * @param A the first matrix to compare. * @param B the second matrix to compare. * @return <tt>true</tt> if both matrices are equal; * <tt>false</tt> otherwise. */ public boolean equals(DoubleMatrix2D A, DoubleMatrix2D B) { if (A==B) return true; if (! (A != null && B != null)) return false; int rows = A.rows(); int columns = A.columns(); if (columns != B.columns() || rows != B.rows()) return false; double epsilon = tolerance(); for (int row=rows; --row >= 0;) { for (int column=columns; --column >= 0;) { //if (!(A.getQuick(row,column) == B.getQuick(row,column))) return false; //if (Math.abs((A.getQuick(row,column) - B.getQuick(row,column)) > epsilon) return false; double x = A.getQuick(row,column); double value = B.getQuick(row,column); double diff = Math.abs(value - x); if ((diff!=diff) && ((value!=value && x!=x) || value==x)) diff = 0; if (!(diff <= epsilon)) return false; } } return true; }
Example 9
Source File: SeqBlas.java From database with GNU General Public License v2.0 | 6 votes |
public void dsymv(boolean isUpperTriangular, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y) { if (isUpperTriangular) A = A.viewDice(); Property.DEFAULT.checkSquare(A); int size = A.rows(); if (size != x.size() || size!=y.size()) { throw new IllegalArgumentException(A.toStringShort() + ", " + x.toStringShort() + ", " + y.toStringShort()); } DoubleMatrix1D tmp = x.like(); for (int i = 0; i < size; i++) { double sum = 0; for (int j = 0; j <= i; j++) { sum += A.getQuick(i,j) * x.getQuick(j); } for (int j = i + 1; j < size; j++) { sum += A.getQuick(j,i) * x.getQuick(j); } tmp.setQuick(i, alpha * sum + beta * y.getQuick(i)); } y.assign(tmp); }
Example 10
Source File: Property.java From database with GNU General Public License v2.0 | 5 votes |
/** * A matrix <tt>A</tt> is <i>non-negative</i> if <tt>A[i,j] >= 0</tt> holds for all cells. * <p> * Note: Ignores tolerance. */ public boolean isNonNegative(DoubleMatrix2D A) { int rows = A.rows(); int columns = A.columns(); for (int row = rows; --row >=0; ) { for (int column = columns; --column >= 0; ) { if (! (A.getQuick(row,column) >= 0)) return false; } } return true; }
Example 11
Source File: SeqBlas.java From database with GNU General Public License v2.0 | 5 votes |
public void dtrmv(boolean isUpperTriangular, boolean transposeA, boolean isUnitTriangular, DoubleMatrix2D A, DoubleMatrix1D x) { if (transposeA) { A = A.viewDice(); isUpperTriangular = !isUpperTriangular; } Property.DEFAULT.checkSquare(A); int size = A.rows(); if (size != x.size()) { throw new IllegalArgumentException(A.toStringShort() + ", " + x.toStringShort()); } DoubleMatrix1D b = x.like(); DoubleMatrix1D y = x.like(); if (isUnitTriangular) { y.assign(1); } else { for (int i = 0; i < size; i++) { y.setQuick(i, A.getQuick(i,i)); } } for (int i = 0; i < size; i++) { double sum = 0; if (!isUpperTriangular) { for (int j = 0; j < i; j++) { sum += A.getQuick(i,j) * x.getQuick(j); } sum += y.getQuick(i) * x.getQuick(i); } else { sum += y.getQuick(i) * x.getQuick(i); for (int j = i + 1; j < size; j++) { sum += A.getQuick(i,j) * x.getQuick(j); } } b.setQuick(i,sum); } x.assign(b); }
Example 12
Source File: LUDecompositionQuick.java From jAudioGIT with GNU Lesser General Public License v2.1 | 5 votes |
/** Decomposes the banded and square matrix <tt>A</tt> into <tt>L</tt> and <tt>U</tt> (in-place). Upon return <tt>A</tt> is overridden with the result <tt>LU</tt>, such that <tt>L*U = A</tt>. Currently supports diagonal and tridiagonal matrices, all other cases fall through to {@link #decompose(DoubleMatrix2D)}. @param semiBandwidth == 1 --> A is diagonal, == 2 --> A is tridiagonal. @param A any matrix. */ public void decompose(DoubleMatrix2D A, int semiBandwidth) { if (! algebra.property().isSquare(A) || semiBandwidth<0 || semiBandwidth>2) { decompose(A); return; } // setup LU = A; int m = A.rows(); int n = A.columns(); // setup pivot vector if (this.piv==null || this.piv.length != m) this.piv = new int[m]; for (int i = m; --i >= 0; ) piv[i] = i; pivsign = 1; if (m*n == 0) { setLU(A); return; // nothing to do } //if (semiBandwidth == 1) { // A is diagonal; nothing to do if (semiBandwidth == 2) { // A is tridiagonal // currently no pivoting ! if (n>1) A.setQuick(1,0, A.getQuick(1,0) / A.getQuick(0,0)); for (int i=1; i<n; i++) { double ei = A.getQuick(i,i) - A.getQuick(i,i-1) * A.getQuick(i-1,i); A.setQuick(i,i, ei); if (i<n-1) A.setQuick(i+1,i, A.getQuick(i+1,i) / ei); } } setLU(A); }
Example 13
Source File: Property.java From database with GNU General Public License v2.0 | 5 votes |
/** * A matrix <tt>A</tt> is <i>positive</i> if <tt>A[i,j] > 0</tt> holds for all cells. * <p> * Note: Ignores tolerance. */ public boolean isPositive(DoubleMatrix2D A) { int rows = A.rows(); int columns = A.columns(); for (int row = rows; --row >=0; ) { for (int column = columns; --column >= 0; ) { if (!(A.getQuick(row,column) > 0)) return false; } } return true; }
Example 14
Source File: Algebra.java From jAudioGIT with GNU Lesser General Public License v2.1 | 5 votes |
/** * Returns the sum of the diagonal elements of matrix <tt>A</tt>; <tt>Sum(A[i,i])</tt>. */ public double trace(DoubleMatrix2D A) { double sum = 0; for (int i=Math.min(A.rows(),A.columns()); --i >= 0;) { sum += A.getQuick(i,i); } return sum; }
Example 15
Source File: Diagonal.java From jAudioGIT with GNU Lesser General Public License v2.1 | 5 votes |
/** * Modifies A to hold its inverse. * @param x the first vector. * @param y the second vector. * @return isNonSingular. * @throws IllegalArgumentException if <tt>x.size() != y.size()</tt>. */ public static boolean inverse(DoubleMatrix2D A) { Property.DEFAULT.checkSquare(A); boolean isNonSingular = true; for (int i=A.rows(); --i >= 0;) { double v = A.getQuick(i,i); isNonSingular &= (v!=0); A.setQuick(i,i, 1/v); } return isNonSingular; }
Example 16
Source File: Property.java From jAudioGIT with GNU Lesser General Public License v2.1 | 5 votes |
/** * A matrix <tt>A</tt> is <i>non-negative</i> if <tt>A[i,j] >= 0</tt> holds for all cells. * <p> * Note: Ignores tolerance. */ public boolean isNonNegative(DoubleMatrix2D A) { int rows = A.rows(); int columns = A.columns(); for (int row = rows; --row >=0; ) { for (int column = columns; --column >= 0; ) { if (! (A.getQuick(row,column) >= 0)) return false; } } return true; }
Example 17
Source File: LUDecompositionQuick.java From database with GNU General Public License v2.0 | 5 votes |
/** Decomposes the banded and square matrix <tt>A</tt> into <tt>L</tt> and <tt>U</tt> (in-place). Upon return <tt>A</tt> is overridden with the result <tt>LU</tt>, such that <tt>L*U = A</tt>. Currently supports diagonal and tridiagonal matrices, all other cases fall through to {@link #decompose(DoubleMatrix2D)}. @param semiBandwidth == 1 --> A is diagonal, == 2 --> A is tridiagonal. @param A any matrix. */ public void decompose(DoubleMatrix2D A, int semiBandwidth) { if (! algebra.property().isSquare(A) || semiBandwidth<0 || semiBandwidth>2) { decompose(A); return; } // setup LU = A; int m = A.rows(); int n = A.columns(); // setup pivot vector if (this.piv==null || this.piv.length != m) this.piv = new int[m]; for (int i = m; --i >= 0; ) piv[i] = i; pivsign = 1; if (m*n == 0) { setLU(A); return; // nothing to do } //if (semiBandwidth == 1) { // A is diagonal; nothing to do if (semiBandwidth == 2) { // A is tridiagonal // currently no pivoting ! if (n>1) A.setQuick(1,0, A.getQuick(1,0) / A.getQuick(0,0)); for (int i=1; i<n; i++) { double ei = A.getQuick(i,i) - A.getQuick(i,i-1) * A.getQuick(i-1,i); A.setQuick(i,i, ei); if (i<n-1) A.setQuick(i+1,i, A.getQuick(i+1,i) / ei); } } setLU(A); }
Example 18
Source File: Algebra.java From database with GNU General Public License v2.0 | 5 votes |
/** * Returns the sum of the diagonal elements of matrix <tt>A</tt>; <tt>Sum(A[i,i])</tt>. */ public double trace(DoubleMatrix2D A) { double sum = 0; for (int i=Math.min(A.rows(),A.columns()); --i >= 0;) { sum += A.getQuick(i,i); } return sum; }
Example 19
Source File: EigenvalueDecomposition.java From database with GNU General Public License v2.0 | 4 votes |
/** Constructs and returns a new eigenvalue decomposition object; The decomposed matrices can be retrieved via instance methods of the returned decomposition object. Checks for symmetry, then constructs the eigenvalue decomposition. @param A A square matrix. @return A decomposition object to access <tt>D</tt> and <tt>V</tt>. @throws IllegalArgumentException if <tt>A</tt> is not square. */ public EigenvalueDecomposition(DoubleMatrix2D A) { Property.DEFAULT.checkSquare(A); n = A.columns(); V = new double[n][n]; d = new double[n]; e = new double[n]; issymmetric = Property.DEFAULT.isSymmetric(A); if (issymmetric) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V[i][j] = A.getQuick(i,j); } } // Tridiagonalize. tred2(); // Diagonalize. tql2(); } else { H = new double[n][n]; ort = new double[n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { H[i][j] = A.getQuick(i,j); } } // Reduce to Hessenberg form. orthes(); // Reduce Hessenberg to real Schur form. hqr2(); } }
Example 20
Source File: EigenvalueDecomposition.java From jAudioGIT with GNU Lesser General Public License v2.1 | 4 votes |
/** Constructs and returns a new eigenvalue decomposition object; The decomposed matrices can be retrieved via instance methods of the returned decomposition object. Checks for symmetry, then constructs the eigenvalue decomposition. @param A A square matrix. @return A decomposition object to access <tt>D</tt> and <tt>V</tt>. @throws IllegalArgumentException if <tt>A</tt> is not square. */ public EigenvalueDecomposition(DoubleMatrix2D A) { Property.DEFAULT.checkSquare(A); n = A.columns(); V = new double[n][n]; d = new double[n]; e = new double[n]; issymmetric = Property.DEFAULT.isSymmetric(A); if (issymmetric) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V[i][j] = A.getQuick(i,j); } } // Tridiagonalize. tred2(); // Diagonalize. tql2(); } else { H = new double[n][n]; ort = new double[n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { H[i][j] = A.getQuick(i,j); } } // Reduce to Hessenberg form. orthes(); // Reduce Hessenberg to real Schur form. hqr2(); } }