Java Code Examples for org.apache.commons.math3.exception.util.LocalizedFormats#STANDARD_DEVIATION

The following examples show how to use org.apache.commons.math3.exception.util.LocalizedFormats#STANDARD_DEVIATION . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: NormalDistribution.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng Random number generator.
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(RandomGenerator rng,
                          double mean,
                          double sd,
                          double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    logStandardDeviationPlusHalfLog2Pi = FastMath.log(sd) + 0.5 * FastMath.log(2 * FastMath.PI);
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 2
Source File: NormalDistribution.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng Random number generator.
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(RandomGenerator rng,
                          double mean,
                          double sd,
                          double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 3
Source File: NormalDistribution.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng Random number generator.
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(RandomGenerator rng,
                          double mean,
                          double sd,
                          double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 4
Source File: NormalDistribution.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng Random number generator.
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(RandomGenerator rng,
                          double mean,
                          double sd,
                          double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 5
Source File: NormalDistribution.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng Random number generator.
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(RandomGenerator rng,
                          double mean,
                          double sd,
                          double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    logStandardDeviationPlusHalfLog2Pi = FastMath.log(sd) + 0.5 * FastMath.log(2 * FastMath.PI);
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 6
Source File: NormalDistribution.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng Random number generator.
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(RandomGenerator rng,
                          double mean,
                          double sd,
                          double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 7
Source File: RandomDataImpl.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/** {@inheritDoc} */
public double nextGaussian(double mu, double sigma) {

    if (sigma <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
    }
    return sigma * getRan().nextGaussian() + mu;
}
 
Example 8
Source File: Cardumen_00165_t.java    From coming with MIT License 5 votes vote down vote up
/**
 * Create a normal distribution using the given mean, standard deviation and
 * inverse cumulative distribution accuracy.
 *
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 2.1
 */
public NormalDistribution(double mean, double sd, double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 9
Source File: NormalDistribution.java    From deeplearning4j with Apache License 2.0 5 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng                Random number generator.
 * @param mean               Mean for this distribution.
 * @param sd                 Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(Random rng, double mean, double sd, double inverseCumAccuracy)
                throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 10
Source File: RandomDataImpl.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/** {@inheritDoc} */
public double nextGaussian(double mu, double sigma) {

    if (sigma <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
    }
    return sigma * getRan().nextGaussian() + mu;
}
 
Example 11
Source File: TruncatedNormalDistribution.java    From nd4j with Apache License 2.0 5 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng                Random number generator.
 * @param mean               Mean for this distribution.
 * @param sd                 Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public TruncatedNormalDistribution(Random rng, double mean, double sd, double inverseCumAccuracy)
                throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 12
Source File: TruncatedNormalDistribution.java    From deeplearning4j with Apache License 2.0 5 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng                Random number generator.
 * @param mean               Mean for this distribution.
 * @param sd                 Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public TruncatedNormalDistribution(Random rng, double mean, double sd, double inverseCumAccuracy)
                throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 13
Source File: RandomDataGenerator.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/** {@inheritDoc} */
public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
    if (sigma <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
    }
    return sigma * getRandomGenerator().nextGaussian() + mu;
}
 
Example 14
Source File: Cardumen_00259_s.java    From coming with MIT License 5 votes vote down vote up
/**
 * Create a normal distribution using the given mean, standard deviation and
 * inverse cumulative distribution accuracy.
 *
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 2.1
 */
public NormalDistribution(double mean, double sd, double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 15
Source File: RandomDataGenerator.java    From astor with GNU General Public License v2.0 5 votes vote down vote up
/** {@inheritDoc} */
public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
    if (sigma <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
    }
    return sigma * getRandomGenerator().nextGaussian() + mu;
}
 
Example 16
Source File: Cardumen_00109_t.java    From coming with MIT License 5 votes vote down vote up
/**
 * Create a normal distribution using the given mean, standard deviation and
 * inverse cumulative distribution accuracy.
 *
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 2.1
 */
public NormalDistribution(double mean, double sd, double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 17
Source File: NormalDistribution.java    From nd4j with Apache License 2.0 5 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng                Random number generator.
 * @param mean               Mean for this distribution.
 * @param sd                 Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public NormalDistribution(Random rng, double mean, double sd, double inverseCumAccuracy)
                throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 18
Source File: Cardumen_0039_s.java    From coming with MIT License 5 votes vote down vote up
/**
 * Create a normal distribution using the given mean, standard deviation and
 * inverse cumulative distribution accuracy.
 *
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 2.1
 */
public NormalDistribution(double mean, double sd, double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 19
Source File: Cardumen_0039_t.java    From coming with MIT License 5 votes vote down vote up
/**
 * Create a normal distribution using the given mean, standard deviation and
 * inverse cumulative distribution accuracy.
 *
 * @param mean Mean for this distribution.
 * @param sd Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 2.1
 */
public NormalDistribution(double mean, double sd, double inverseCumAccuracy)
    throws NotStrictlyPositiveException {
    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}
 
Example 20
Source File: LogNormalDistribution.java    From deeplearning4j with Apache License 2.0 5 votes vote down vote up
/**
 * Creates a normal distribution.
 *
 * @param rng                Random number generator.
 * @param mean               Mean for this distribution.
 * @param sd                 Standard deviation for this distribution.
 * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 * @throws NotStrictlyPositiveException if {@code sd <= 0}.
 * @since 3.1
 */
public LogNormalDistribution(Random rng, double mean, double sd, double inverseCumAccuracy)
                throws NotStrictlyPositiveException {
    super(rng);

    if (sd <= 0) {
        throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
    }

    this.mean = mean;
    standardDeviation = sd;
    solverAbsoluteAccuracy = inverseCumAccuracy;
}