Java Code Examples for org.apache.commons.math3.stat.descriptive.DescriptiveStatistics#getMean()
The following examples show how to use
org.apache.commons.math3.stat.descriptive.DescriptiveStatistics#getMean() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 2
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 3
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 4
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 5
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 6
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 7
Source File: Spectrum.java From cineast with MIT License | 6 votes |
/** * Find local maxima in the spectrum and returns the indices of those maxima as integer * array. * * @param threshold Threshold for search. Values bellow that threshold won't be considered. * @return Array containing indices (zero-based) of local maxima. */ public List<Pair<Float, Double>> findLocalMaxima(double threshold, boolean significant) { List<Pair<Float,Double>> peaks = new ArrayList<>(); for (int i=1;i<this.spectrum.length-1;i++) { if (this.spectrum[i] < threshold) { continue; } if (spectrum[i] > Math.max(spectrum[i+1], spectrum[i-1])) { peaks.add(this.get(i)); } } if (significant) { DescriptiveStatistics statistics = new DescriptiveStatistics(); for (Pair<Float, Double> peak : peaks) { statistics.addValue(peak.second); } final double mean = statistics.getMean(); final double stddev = statistics.getStandardDeviation(); peaks.removeIf(p -> p.second < (mean + stddev * 2)); } return peaks; }
Example 8
Source File: ExecuteOutlierErrors.java From BART with MIT License | 6 votes |
private String printStat(DescriptiveStatistics stats) { double mean = stats.getMean(); double std = stats.getStandardDeviation(); double median = stats.getPercentile(50); double q1 = stats.getPercentile(25); double q3 = stats.getPercentile(75); double iqr = q3 - q1; double trimmedMean = (q1 + q3 + 2 * median) / 4; double skewness = stats.getSkewness(); StringBuilder sb = new StringBuilder(); sb.append(" *** Distribution Analysis ***").append("\n") .append("\tMean= ").append(mean).append("\n") .append("\tStd= ").append(std).append("\n") .append("\tMedian= ").append(median).append("\n") .append("\tQ1= ").append(q1).append("\tQ3=").append(q3).append("\tIQR=").append(iqr).append("\n") .append("\tTrimmed Mean= ").append(trimmedMean).append("\n") .append("\tSkewness= ").append(skewness).append("\n"); return sb.toString(); }
Example 9
Source File: ColumnarStructureX.java From mmtf-spark with Apache License 2.0 | 5 votes |
/** * Returns z-scores for B-factors (normalized B-factors). * * Critical z-score values: Confidence level Tail Area z critical * 90% 0.05 +-1.645 * 95% 0.025 +-1.96 * 99% 0.005 +-2.576 * * @return */ public float[] getNormalizedbFactors() { if (normalizedbFactors == null) { normalizedbFactors = new float[getNumAtoms()]; float[] bFactors = getbFactors(); String[] types = getEntityTypes(); DescriptiveStatistics stats = new DescriptiveStatistics(); for (int i = 0; i < getNumAtoms(); i++) { if (! (types[i].equals("WAT"))) { stats.addValue(bFactors[i]); } } double mean = stats.getMean(); double stddev = stats.getStandardDeviation(); if (stddev > EPSILON) { for (int i = 0; i < getNumAtoms(); i++) { normalizedbFactors[i] = (float) ((bFactors[i] - mean) / stddev); } } else { Arrays.fill(normalizedbFactors, Float.MAX_VALUE); } } return normalizedbFactors; }
Example 10
Source File: AbstractServerSideTest.java From lightning with MIT License | 5 votes |
private void calculateActualResult(PerfMonEntries entries) { DescriptiveStatistics ds = new DescriptiveStatistics(); entries.asStream() .map(e -> e.getValue()) .forEach(ds::addValue); actualResult = (int) ds.getMean(); }
Example 11
Source File: CorrelationTechniquesReducer.java From data-polygamy with BSD 3-Clause "New" or "Revised" License | 5 votes |
private double[] normalize(double[] array) { DescriptiveStatistics stats = new DescriptiveStatistics(array); double mean = stats.getMean(); double stdDev = stats.getStandardDeviation(); for (int i = 0; i < array.length; i++) { array[i] = (array[i] - mean)/stdDev; } return array; }
Example 12
Source File: AvroJacksonBenchmarks.java From schema-evolution-samples with Apache License 2.0 | 5 votes |
private Double average(List<Double> values){ Collections.sort(values,(o1, o2) -> o1.compareTo(o2)); List<Double> filtered = values.subList((int)(0.2*values.size()),(int)(0.8*values.size())); DescriptiveStatistics dStats = new DescriptiveStatistics(filtered.stream().mapToDouble(Double::doubleValue).toArray()); return dStats.getMean(); }
Example 13
Source File: MovingMADEvaluator.java From lucene-solr with Apache License 2.0 | 5 votes |
@Override public Object doWork(Object first, Object second) throws IOException{ if(null == first){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the first value",toExpression(constructingFactory))); } if(null == second){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the second value",toExpression(constructingFactory))); } if(!(first instanceof List<?>)){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for the first value, expecting a List",toExpression(constructingFactory), first.getClass().getSimpleName())); } if(!(second instanceof Number)){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for the second value, expecting a Number",toExpression(constructingFactory), first.getClass().getSimpleName())); } List<?> values = (List<?>)first; int window = ((Number)second).intValue(); List<Number> moving = new ArrayList<>(); DescriptiveStatistics slider = new DescriptiveStatistics(window); for(Object value : values){ slider.addValue(((Number)value).doubleValue()); if(slider.getN() >= window){ double[] doubles = slider.getValues(); double mean = slider.getMean(); double total = 0; for(double d : doubles) { total+=Math.abs(d-mean); } moving.add(total/window); } } return moving; }
Example 14
Source File: AllPairsTable.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
public double getAverageSeparability(final Collection<String> classes) { DescriptiveStatistics stats = new DescriptiveStatistics(); for (Collection<String> pair : SetUtil.getAllPossibleSubsetsWithSize(classes, 2)) { Iterator<String> i = pair.iterator(); String a = i.next(); String b = i.next(); stats.addValue(this.getSeparability(a, b)); } return stats.getMean(); }
Example 15
Source File: ChoquisticRelevanceLoss.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
@Override public double loss(final List<? extends int[]> expected, final List<? extends IMultiLabelClassification> actual) { this.checkConsistency(expected, actual); DescriptiveStatistics stats = new DescriptiveStatistics(); for (int i = 0; i < expected.size(); i++) { stats.addValue(this.instanceLoss(expected.get(i), actual.get(i).getPrediction())); } return stats.getMean(); }
Example 16
Source File: OWARelevanceLoss.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
@Override public double loss(final List<? extends int[]> expected, final List<? extends IMultiLabelClassification> actual) { this.checkConsistency(expected, actual); DescriptiveStatistics stats = new DescriptiveStatistics(); for (int i = 0; i < expected.size(); i++) { stats.addValue(this.instanceLoss(expected.get(i), actual.get(i).getPrediction())); } return stats.getMean(); }
Example 17
Source File: PLNetDyadRanker.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
/** * Computes the average error on a set of dyad rankings in terms on the negative * log likelihood (NLL). * * @param drTest * Test data on which the error should be computed given as a * {@link List} of {@link IDyadRankingInstance} * @return Average error on the given test data */ private double computeAvgError(final List<INDArray> drTest) { DescriptiveStatistics stats = new DescriptiveStatistics(); for (INDArray dyadRankingInstance : drTest) { INDArray outputs = this.plNet.output(dyadRankingInstance); outputs = outputs.transpose(); double score = PLNetLoss.computeLoss(outputs).getDouble(0); stats.addValue(score); } return stats.getMean(); }
Example 18
Source File: PhiAccrualFailureDetector.java From onos with Apache License 2.0 | 5 votes |
private double computePhi(DescriptiveStatistics samples, long tLast, long tNow) { long elapsedTime = tNow - tLast; double meanMillis = samples.getMean(); double y = (elapsedTime - meanMillis) / Math.max(samples.getStandardDeviation(), minStandardDeviationMillis); double e = Math.exp(-y * (1.5976 + 0.070566 * y * y)); if (elapsedTime > meanMillis) { return -Math.log10(e / (1.0 + e)); } else { return -Math.log10(1.0 - 1.0 / (1.0 + e)); } }
Example 19
Source File: RespTimeAvgTest.java From lightning with MIT License | 4 votes |
@Override protected int calculateNumericResult(DescriptiveStatistics ds) { return (int) ds.getMean(); }
Example 20
Source File: PhiAccrualFailureDetector.java From atomix with Apache License 2.0 | 3 votes |
/** * Computes the phi value from the given samples. * <p> * The original phi value in Hayashibara's paper is calculated based on a normal distribution. * Here, we calculate it based on an exponential distribution. * * @param samples the samples from which to compute phi * @param lastHeartbeat the last heartbeat * @param currentTime the current time * @return phi */ private double computePhi(DescriptiveStatistics samples, long lastHeartbeat, long currentTime) { long size = samples.getN(); long t = currentTime - lastHeartbeat; return (size > 0) ? phiFactor * t / samples.getMean() : 100; }