Java Code Examples for org.apache.commons.math3.stat.descriptive.DescriptiveStatistics#getStandardDeviation()
The following examples show how to use
org.apache.commons.math3.stat.descriptive.DescriptiveStatistics#getStandardDeviation() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: Spectrum.java From cineast with MIT License | 6 votes |
/** * Find local maxima in the spectrum and returns the indices of those maxima as integer * array. * * @param threshold Threshold for search. Values bellow that threshold won't be considered. * @return Array containing indices (zero-based) of local maxima. */ public List<Pair<Float, Double>> findLocalMaxima(double threshold, boolean significant) { List<Pair<Float,Double>> peaks = new ArrayList<>(); for (int i=1;i<this.spectrum.length-1;i++) { if (this.spectrum[i] < threshold) { continue; } if (spectrum[i] > Math.max(spectrum[i+1], spectrum[i-1])) { peaks.add(this.get(i)); } } if (significant) { DescriptiveStatistics statistics = new DescriptiveStatistics(); for (Pair<Float, Double> peak : peaks) { statistics.addValue(peak.second); } final double mean = statistics.getMean(); final double stddev = statistics.getStandardDeviation(); peaks.removeIf(p -> p.second < (mean + stddev * 2)); } return peaks; }
Example 2
Source File: ExecuteOutlierErrors.java From BART with MIT License | 6 votes |
private String printStat(DescriptiveStatistics stats) { double mean = stats.getMean(); double std = stats.getStandardDeviation(); double median = stats.getPercentile(50); double q1 = stats.getPercentile(25); double q3 = stats.getPercentile(75); double iqr = q3 - q1; double trimmedMean = (q1 + q3 + 2 * median) / 4; double skewness = stats.getSkewness(); StringBuilder sb = new StringBuilder(); sb.append(" *** Distribution Analysis ***").append("\n") .append("\tMean= ").append(mean).append("\n") .append("\tStd= ").append(std).append("\n") .append("\tMedian= ").append(median).append("\n") .append("\tQ1= ").append(q1).append("\tQ3=").append(q3).append("\tIQR=").append(iqr).append("\n") .append("\tTrimmed Mean= ").append(trimmedMean).append("\n") .append("\tSkewness= ").append(skewness).append("\n"); return sb.toString(); }
Example 3
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 4
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 5
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 6
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 7
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the series, so in the end it is having a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 8
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 9
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 10
Source File: StatUtils.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; }
Example 11
Source File: DescriptiveStats.java From Java-Data-Science-Cookbook with MIT License | 5 votes |
public void getDescStats(double[] values){ DescriptiveStatistics stats = new DescriptiveStatistics(); for( int i = 0; i < values.length; i++) { stats.addValue(values[i]); } double mean = stats.getMean(); double std = stats.getStandardDeviation(); double median = stats.getPercentile(50); System.out.println(mean + "\t" + std + "\t" + median); }
Example 12
Source File: ColumnarStructureX.java From mmtf-spark with Apache License 2.0 | 5 votes |
/** * Returns z-scores for B-factors (normalized B-factors). * * Critical z-score values: Confidence level Tail Area z critical * 90% 0.05 +-1.645 * 95% 0.025 +-1.96 * 99% 0.005 +-2.576 * * @return */ public float[] getNormalizedbFactors() { if (normalizedbFactors == null) { normalizedbFactors = new float[getNumAtoms()]; float[] bFactors = getbFactors(); String[] types = getEntityTypes(); DescriptiveStatistics stats = new DescriptiveStatistics(); for (int i = 0; i < getNumAtoms(); i++) { if (! (types[i].equals("WAT"))) { stats.addValue(bFactors[i]); } } double mean = stats.getMean(); double stddev = stats.getStandardDeviation(); if (stddev > EPSILON) { for (int i = 0; i < getNumAtoms(); i++) { normalizedbFactors[i] = (float) ((bFactors[i] - mean) / stddev); } } else { Arrays.fill(normalizedbFactors, Float.MAX_VALUE); } } return normalizedbFactors; }
Example 13
Source File: CorrelationTechniquesReducer.java From data-polygamy with BSD 3-Clause "New" or "Revised" License | 5 votes |
private double[] normalize(double[] array) { DescriptiveStatistics stats = new DescriptiveStatistics(array); double mean = stats.getMean(); double stdDev = stats.getStandardDeviation(); for (int i = 0; i < array.length; i++) { array[i] = (array[i] - mean)/stdDev; } return array; }
Example 14
Source File: RespTimeStdDevTest.java From lightning with MIT License | 5 votes |
@Override protected void calculateActualResult(JmeterTransactions jmeterTransactions) { DescriptiveStatistics ds = new DescriptiveStatistics(); jmeterTransactions.asStream() .map(t -> (double) t.getElapsed()) .forEach(ds::addValue); actualResult = (int) ds.getStandardDeviation(); }
Example 15
Source File: RPCA.java From Surus with Apache License 2.0 | 5 votes |
private double standardDeviation(double[][] x) { DescriptiveStatistics stats = new DescriptiveStatistics(); for (int i = 0; i < x.length; i ++) for (int j = 0; j < x[i].length; j++) stats.addValue(x[i][j]); return stats.getStandardDeviation(); }