Java Code Examples for org.biojava.nbio.structure.align.model.AFPChain#setBlockNum()

The following examples show how to use org.biojava.nbio.structure.align.model.AFPChain#setBlockNum() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: AlignmentTools.java    From biojava with GNU Lesser General Public License v2.1 6 votes vote down vote up
/**
 * @param afpChain Input afpchain. UNMODIFIED
 * @param ca1
 * @param ca2
 * @param optLens
 * @param optAln
 * @return A NEW AfpChain based off the input but with the optAln modified
 * @throws StructureException if an error occured during superposition
 */
public static AFPChain replaceOptAln(AFPChain afpChain, Atom[] ca1, Atom[] ca2,
									 int blockNum, int[] optLens, int[][][] optAln) throws StructureException {
	int optLength = 0;
	for( int blk=0;blk<blockNum;blk++) {
		optLength += optLens[blk];
	}

	//set everything
	AFPChain refinedAFP = (AFPChain) afpChain.clone();
	refinedAFP.setOptLength(optLength);
	refinedAFP.setBlockSize(optLens);
	refinedAFP.setOptLen(optLens);
	refinedAFP.setOptAln(optAln);
	refinedAFP.setBlockNum(blockNum);

	//TODO recalculate properties: superposition, tm-score, etc
	Atom[] ca2clone = StructureTools.cloneAtomArray(ca2); // don't modify ca2 positions
	AlignmentTools.updateSuperposition(refinedAFP, ca1, ca2clone);

	AFPAlignmentDisplay.getAlign(refinedAFP, ca1, ca2clone);
	return refinedAFP;
}
 
Example 2
Source File: OptimalCECPMain.java    From biojava with GNU Lesser General Public License v2.1 5 votes vote down vote up
/**
 * Sometimes it's convenient to store an alignment using java collections,
 * where <tt>blocks.get(blockNum).get(0).get(pos)</tt> specifies the aligned
 * residue at position <i>pos</i> of block <i>blockNum</i> of the first
 * protein.
 *
 * This method takes such a collection and stores it into the afpChain's
 * {@link AFPChain#setOptAln(int[][][]) optAln}, setting the associated
 * length variables as well.
 *
 * @param afpChain
 * @param blocks
 */
private static void assignOptAln(AFPChain afpChain, List<List<List<Integer>>> blocks)
{

	int[][][] optAln = new int[blocks.size()][][];
	int[] optLen = new int[blocks.size()];
	int optLength = 0;
	int numBlocks = blocks.size();

	for(int block = 0; block < numBlocks; block++) {
		// block should be 2xN rectangular
		assert(blocks.get(block).size() == 2);
		assert( blocks.get(block).get(0).size() == blocks.get(block).get(1).size());

		optLen[block] = blocks.get(block).get(0).size();
		optLength+=optLen[block];

		optAln[block] = new int[][] {
				new int[optLen[block]],
				new int[optLen[block]]
		};
		for(int pos = 0; pos < optLen[block]; pos++) {
			optAln[block][0][pos] = blocks.get(block).get(0).get(pos);
			optAln[block][1][pos] = blocks.get(block).get(1).get(pos);
		}
	}


	afpChain.setBlockNum(numBlocks);
	afpChain.setOptAln(optAln);
	afpChain.setOptLen(optLen);
	afpChain.setOptLength(optLength);

	// TODO I don't know what these do. Should they be set?
	//afpChain.setBlockSize(blockSize);
	//afpChain.setBlockResList(blockResList);
	//afpChain.setChainLen(chainLen);

}
 
Example 3
Source File: CeCPMainTest.java    From biojava with GNU Lesser General Public License v2.1 5 votes vote down vote up
/**
 * Creates a minimal AFPChain from the specified alignment and proteins
 * @param dupAlign
 * @param ca1
 * @param ca2
 * @return
 */
private AFPChain makeDummyAFPChain(int[][][] dupAlign, Atom[] ca1,Atom[] ca2) {
	AFPChain afp = new AFPChain(AFPChain.UNKNOWN_ALGORITHM);
	afp.setOptAln(dupAlign);
	afp.setOptLength(dupAlign[0][1].length);
	afp.setCa1Length(ca1.length);
	afp.setCa2Length(ca2.length);
	afp.setBlockNum(1);
	afp.setOptLen(new int[] {dupAlign[0][1].length});
	return afp;
}
 
Example 4
Source File: AFPPostProcessor.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * in some special cases, there is no maginificent twists in the
final chaining result; however, their rmsd (original and after
optimizing) are very large. Therefore, a post-process is taken
to split the blocks further at the ralative bad connections (
with relative high distance variation)
to be tested:
  split or not according to optimized or initial chaining???
 */

private static void splitBlock(FatCatParameters params, AFPChain afpChain, Atom[] ca1, Atom[] ca2)
{
	if ( debug)
		System.err.println("AFPPostProcessor: splitBlock");
	int     i, a, bk, cut;
	double  maxs, maxt;
	int blockNum = afpChain.getBlockNum();
	int maxTra = params.getMaxTra();
	double badRmsd = params.getBadRmsd();

	int     blockNum0 = blockNum;

	double[] blockRmsd = afpChain.getBlockRmsd();
	int[] blockSize = afpChain.getBlockSize();
	int[] block2Afp = afpChain.getBlock2Afp();
	double[] afpChainTwiList = afpChain.getAfpChainTwiList();

	bk = 0;
	while(blockNum < maxTra + 1)    {
		maxs = 0;
		for(i = 0; i < blockNum; i ++)   {
			if(blockRmsd[i] > maxs && blockSize[i] > 2) { //according to the optimized alignment
				maxs = blockRmsd[i];
				bk = i;
			} //!(Note: optRmsd, not blockRmsd, according to the optimized alignment
		}
		if(maxs < badRmsd)      break;
		maxt = 0;
		cut = 0;
		for(i = 1; i < blockSize[bk]; i ++)     {
			a = i + block2Afp[bk];
			if(afpChainTwiList[a] > maxt)   {
				maxt = afpChainTwiList[a];
				cut = i;

			}
		}
		if(debug)
			System.out.println(String.format("block %d original size %d rmsd %.3f maxt %.2f cut at %d\n", bk, blockSize[bk], maxs, maxt, cut));
		for(i = blockNum - 1; i > bk; i --)     {
			block2Afp[i + 1] = block2Afp[i];
			blockSize[i + 1] = blockSize[i];
			blockRmsd[i + 1] = blockRmsd[i];
		} //update block information
		block2Afp[bk + 1] = cut + block2Afp[bk];
		blockSize[bk + 1] = blockSize[bk] - cut;
		blockSize[bk] = cut;

		if(debug)
			System.out.println(String.format("  split into %d and %d sizes\n", blockSize[bk], blockSize[bk + 1]));


		int[] afpChainList = afpChain.getAfpChainList();
		//int[] subrange1    = getSubrange(afpChainList, block2Afp[bk + 1] );
		blockRmsd[bk + 1]  = AFPChainer.calAfpRmsd(blockSize[bk + 1],  afpChainList, block2Afp[bk + 1] , afpChain, ca1, ca2);

		//int[] subrange2    = getSubrange(afpChainList, block2Afp[bk] );
		blockRmsd[bk]      = AFPChainer.calAfpRmsd(blockSize[bk],      afpChainList, block2Afp[bk], afpChain, ca1, ca2);

		//split a block at the biggest position
		blockNum ++;
		afpChain.setAfpChainList(afpChainList);
	}
	if(blockNum - blockNum0 > 0)    {
		if(debug)
			System.out.println(String.format("Split %d times:\n", blockNum - blockNum0));
		for(i = 0; i < blockNum; i ++)  {
			if(debug)
				System.out.println(String.format("  block %d size %d from %d rmsd %.3f\n", i, blockSize[i], block2Afp[i], blockRmsd[i]));
		}
	}


	afpChain.setBlockNum(blockNum);
	afpChain.setBlockSize(blockSize);
	afpChain.setBlockRmsd(blockRmsd);
	afpChain.setBlock2Afp(block2Afp);


}
 
Example 5
Source File: AFPPostProcessor.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * remove the artifical small rigid-body superimpose in the middle
 clust the similar superimpositions (caused by the small flexible
 region, which is detected as a seperate rigid superimposing region by adding
 two twists before and after it(artifically!)
 one possible solution: allowing long enough loops in the chaining process,
 which however increase the calculation complexity
 */
private static void deleteBlock(FatCatParameters params, AFPChain afpChain,Atom[] ca1, Atom[] ca2)
{
	int blockNum = afpChain.getBlockNum();
	List<AFP> afpSet = afpChain.getAfpSet();

	int[] afpChainList =afpChain.getAfpChainList();



	int[] block2Afp = afpChain.getBlock2Afp();
	int[] blockSize = afpChain.getBlockSize();

	double[] blockRmsd = afpChain.getBlockRmsd();

	int fragLen = params.getFragLen();

	//remove those blocks (both in terminals and in the middle) with only a AFP
	//but still keep those small blocks spaning large regions
	if(blockNum <= 1)       return;
	int     blockNumOld = blockNum;
	int     i, j, b1, b2, e1, e2, len;
	e1 = e2 = 0;
	for(i = 0; i < blockNum; i ++) {
		b1 = e1;
		b2 = e2;
		if(i < blockNum - 1)    {
			e1 = afpSet.get(afpChainList[block2Afp[i + 1]]).getP1();
			e2 = afpSet.get(afpChainList[block2Afp[i + 1]]).getP2();
		}
		else    {
			e1 = ca1.length;
			e2 = ca2.length;
		}
		if(blockSize[i] > 1)    continue;
		len = (e1 - b1) < (e2 - b2)?(e1 - b1):(e2 - b2);
		//if(i == blockNum - 1) blockNum --;
		if(len < 2 * fragLen)   {
			for(j = i; j < blockNum - 1; j ++)      {
				blockRmsd[j] = blockRmsd[j + 1];
				blockSize[j] = blockSize[j + 1];
				block2Afp[j] = block2Afp[j + 1];
			}
			blockNum --;
			i --;
		} //delete a block
	}
	if(blockNumOld > blockNum)
		if(debug)
			System.out.println(
					String.format("Delete %d small blocks\n", blockNumOld - blockNum)
			);


	if (debug)
		System.err.println("deleteBlock: end blockNum:"+ blockNum);
	afpChain.setBlock2Afp(block2Afp);
	afpChain.setBlockSize(blockSize);
	afpChain.setAfpChainList(afpChainList);
	afpChain.setBlockNum(blockNum);
	afpChain.setBlockRmsd(blockRmsd);
}
 
Example 6
Source File: AFPPostProcessor.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * Merge consecutive blocks with similar transformation
 */
private static  void mergeBlock(FatCatParameters params, AFPChain afpChain,Atom[] ca1,Atom[] ca2)
{

	int blockNum = afpChain.getBlockNum();
	double badRmsd = params.getBadRmsd();

	int[] block2Afp = afpChain.getBlock2Afp();
	int[] blockSize = afpChain.getBlockSize();

	double[] blockRmsd = afpChain.getBlockRmsd();

	int afpChainTwiNum = afpChain.getAfpChainTwiNum();

	//clustering the neighbor blocks if their transformations are similar
	int     i, j, b1, b2, minb1, minb2;
	double  minrmsd;
	int     merge = 0;
	int     blockNumOld = blockNum;
	double[][]  rmsdlist = null;
	if(blockNum > 1)        {
		rmsdlist = new double[blockNumOld][blockNumOld];
		for(b1 = 0; b1 < blockNum - 1; b1 ++)   {
			for(b2 = b1 + 1; b2 < blockNum; b2 ++)  {
				rmsdlist[b1][b2] = combineRmsd(b1, b2,afpChain,ca1,ca2);
			}
		}
	}
	minb1 = 0;
	while(blockNum > 1)     {
		minrmsd = 1000;
		for(i = 0; i < blockNum - 1; i ++)      {
			j = i + 1; //only consider neighbor blocks
			if(minrmsd > rmsdlist[i][j])    {
				minrmsd = rmsdlist[i][j];
				minb1 = i;
			}
		}
		minb2 = minb1 + 1; //merge those most similar blocks
		//maxrmsd = (blockRmsd[minb1] > blockRmsd[minb2])?blockRmsd[minb1]:blockRmsd[minb2];
		if(minrmsd < badRmsd)   {
			if(debug)
				System.out.println(String.format("merge block %d (rmsd %.3f) and %d (rmsd %.3f), total rmsd %.3f\n",
						minb1, blockRmsd[minb1], minb2, blockRmsd[minb2], minrmsd));
			blockSize[minb1] += blockSize[minb2];
			blockRmsd[minb1] = minrmsd;
			for(i = minb2; i < blockNum - 1; i ++)  {
				block2Afp[i] = block2Afp[i + 1];
				blockSize[i] = blockSize[i + 1];
				blockRmsd[i] = blockRmsd[i + 1];
			} //update block information
			afpChainTwiNum --;
			blockNum --;
			for(b1 = 0; b1 < blockNum - 1; b1 ++)   {
				for(b2 = b1 + 1; b2 < blockNum; b2 ++) {
					if(b1 == minb1 || b2 == minb1)  {
						rmsdlist[b1][b2] = combineRmsd(b1, b2, afpChain,ca1,ca2);
					}
					else if(b2 < minb1)     continue;
					else if(b1 < minb1)     {
						rmsdlist[b1][b2] = rmsdlist[b1][b2 + 1];
					}
					else    {
						rmsdlist[b1][b2] = rmsdlist[b1 + 1][b2 + 1];
					}
				}
			} //update the rmsdlist
			merge ++;
		} //merge two blocks
		else if(minrmsd >= 100) break;
		else    {
			rmsdlist[minb1][minb2] += 100;
		} //not merge, modify the rmsdlist so that this combination is not considered in next iteration
	}

	if(merge > 0)       {
		if(debug)
			System.out.println(String.format("Merge %d blocks, remaining %d blocks\n", merge, blockNum));
	}

	if (debug){
		System.err.println("AFPPostProcessor: mergeBlock end blocknum:" + blockNum);
	}
	afpChain.setBlock2Afp(block2Afp);
	afpChain.setBlockSize(blockSize);
	afpChain.setBlockNum(blockNum);
	afpChain.setBlockRmsd(blockRmsd);
	afpChain.setAfpChainTwiNum(afpChainTwiNum);
}
 
Example 7
Source File: AlignmentTools.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * Fundamentally, an alignment is just a list of aligned residues in each
 * protein. This method converts two lists of ResidueNumbers into an
 * AFPChain.
 *
 * <p>Parameters are filled with defaults (often null) or sometimes
 * calculated.
 *
 * <p>For a way to modify the alignment of an existing AFPChain, see
 * {@link AlignmentTools#replaceOptAln(AFPChain, Atom[], Atom[], Map)}
 * @param ca1 CA atoms of the first protein
 * @param ca2 CA atoms of the second protein
 * @param aligned1 A list of aligned residues from the first protein
 * @param aligned2 A list of aligned residues from the second protein.
 *  Must be the same length as aligned1.
 * @return An AFPChain representing the alignment. Many properties may be
 *  null or another default.
 * @throws StructureException if an error occured during superposition
 * @throws IllegalArgumentException if aligned1 and aligned2 have different
 *  lengths
 * @see AlignmentTools#replaceOptAln(AFPChain, Atom[], Atom[], Map)
 */
public static AFPChain createAFPChain(Atom[] ca1, Atom[] ca2,
									  ResidueNumber[] aligned1, ResidueNumber[] aligned2 ) throws StructureException {
	//input validation
	int alnLen = aligned1.length;
	if(alnLen != aligned2.length) {
		throw new IllegalArgumentException("Alignment lengths are not equal");
	}

	AFPChain a = new AFPChain(AFPChain.UNKNOWN_ALGORITHM);
	try {
		a.setName1(ca1[0].getGroup().getChain().getStructure().getName());
		if(ca2[0].getGroup().getChain().getStructure() != null) {
			// common case for cloned ca2
			a.setName2(ca2[0].getGroup().getChain().getStructure().getName());
		}
	} catch(Exception e) {
		// One of the structures wasn't fully created. Ignore
	}
	a.setBlockNum(1);
	a.setCa1Length(ca1.length);
	a.setCa2Length(ca2.length);

	a.setOptLength(alnLen);
	a.setOptLen(new int[] {alnLen});


	Matrix[] ms = new Matrix[a.getBlockNum()];
	a.setBlockRotationMatrix(ms);
	Atom[] blockShiftVector = new Atom[a.getBlockNum()];
	a.setBlockShiftVector(blockShiftVector);

	String[][][] pdbAln = new String[1][2][alnLen];
	for(int i=0;i<alnLen;i++) {
		pdbAln[0][0][i] = aligned1[i].getChainName()+":"+aligned1[i];
		pdbAln[0][1][i] = aligned2[i].getChainName()+":"+aligned2[i];
	}

	a.setPdbAln(pdbAln);

	// convert pdbAln to optAln, and fill in some other basic parameters
	AFPChainXMLParser.rebuildAFPChain(a, ca1, ca2);

	return a;

	// Currently a single block. Split into several blocks by sequence if needed
	//		return AlignmentTools.splitBlocksByTopology(a,ca1,ca2);
}
 
Example 8
Source File: AlignmentTools.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * It replaces an optimal alignment of an AFPChain and calculates all the new alignment scores and variables.
 */
public static AFPChain replaceOptAln(int[][][] newAlgn, AFPChain afpChain, Atom[] ca1, Atom[] ca2) throws StructureException {

	//The order is the number of groups in the newAlgn
	int order = newAlgn.length;

	//Calculate the alignment length from all the subunits lengths
	int[] optLens = new int[order];
	for(int s=0;s<order;s++) {
		optLens[s] = newAlgn[s][0].length;
	}
	int optLength = 0;
	for(int s=0;s<order;s++) {
		optLength += optLens[s];
	}

	//Create a copy of the original AFPChain and set everything needed for the structure update
	AFPChain copyAFP = (AFPChain) afpChain.clone();

	//Set the new parameters of the optimal alignment
	copyAFP.setOptLength(optLength);
	copyAFP.setOptLen(optLens);
	copyAFP.setOptAln(newAlgn);

	//Set the block information of the new alignment
	copyAFP.setBlockNum(order);
	copyAFP.setBlockSize(optLens);
	copyAFP.setBlockResList(newAlgn);
	copyAFP.setBlockResSize(optLens);
	copyAFP.setBlockGap(calculateBlockGap(newAlgn));

	//Recalculate properties: superposition, tm-score, etc
	Atom[] ca2clone = StructureTools.cloneAtomArray(ca2); // don't modify ca2 positions
	AlignmentTools.updateSuperposition(copyAFP, ca1, ca2clone);

	//It re-does the sequence alignment strings from the OptAlgn information only
	copyAFP.setAlnsymb(null);
	AFPAlignmentDisplay.getAlign(copyAFP, ca1, ca2clone);

	return copyAFP;
}
 
Example 9
Source File: TestAFPChainConversion.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
@Test
public void testAFPconversion() throws Exception{

	//Fill an AFPChain with the general information
	AFPChain afp = new AFPChain("algorithm");
	afp.setName1("name1");
	afp.setName2("name2");
	afp.setVersion("1.0");
	afp.setCalculationTime(System.currentTimeMillis());
	//Generate a optimal alignment with 3 blocks and 5 residues per block
	int[][][] optAln = new int[3][][];
	for (int b=0; b<optAln.length; b++){
		int[][] block = new int[2][];
		for (int c=0; c<block.length; c++){
			int[] residues = {b+5,b+6,b+7,b+8,b+9};
			block[c] = residues;
		}
		optAln[b] = block;
	}
	afp.setOptAln(optAln);
	afp.setBlockNum(optAln.length);
	//Set the rotation matrix and shift to random numbers
	double[][] mat = {{0.13,1.5,0.84},{1.3,0.44,2.3},{1.0,1.2,2.03}};
	Matrix rot = new Matrix(mat);
	Atom shift = new AtomImpl();
	shift.setX(0.44);
	shift.setY(0.21);
	shift.setZ(0.89);
	Matrix[] blockRot = {rot,rot,rot};
	afp.setBlockRotationMatrix(blockRot);
	Atom[] blockShift = {shift,shift,shift};
	afp.setBlockShiftVector(blockShift);

	//Convert the AFPChain into a MultipleAlignment (without Atoms)
	MultipleAlignmentEnsemble ensemble =
			new MultipleAlignmentEnsembleImpl(afp,null,null,true);
	MultipleAlignment msa = ensemble.getMultipleAlignment(0);

	//Test for all the information
	assertEquals(afp.getName1(),ensemble.getStructureIdentifiers().get(0).getIdentifier());
	assertEquals(afp.getName2(), ensemble.getStructureIdentifiers().get(1).getIdentifier());
	assertEquals(afp.getAlgorithmName(), ensemble.getAlgorithmName());
	assertEquals(afp.getVersion(),ensemble.getVersion());
	assertTrue(ensemble.getCalculationTime().equals(
			afp.getCalculationTime()));
	assertEquals(afp.getBlockNum(), msa.getBlockSets().size());
	for (int b = 0; b<afp.getBlockNum(); b++){
		assertEquals(Calc.getTransformation(
				afp.getBlockRotationMatrix()[b],
				afp.getBlockShiftVector()[b]),
				msa.getBlockSet(b).getTransformations().get(1));
	}

	//Test for the scores
	assertEquals(msa.getScore(MultipleAlignmentScorer.CE_SCORE),
			(Double) afp.getAlignScore());
	assertEquals(msa.getScore(MultipleAlignmentScorer.AVGTM_SCORE),
			(Double) afp.getTMScore());
	assertEquals(msa.getScore(MultipleAlignmentScorer.RMSD),
			(Double) afp.getTotalRmsdOpt());


	//Test for the optimal alignment
	for (int b=0; b<3; b++){
		for (int c=0; c<2; c++){
			for (int res=0; res<5; res++){
				Integer afpRes = afp.getOptAln()[b][c][res];
				assertEquals(afpRes, msa.getBlock(b).
						getAlignRes().get(c).get(res));
			}
		}
	}
}