Java Code Examples for org.biojava.nbio.structure.align.model.AFPChain#setBlockSize()

The following examples show how to use org.biojava.nbio.structure.align.model.AFPChain#setBlockSize() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: AlignmentTools.java    From biojava with GNU Lesser General Public License v2.1 6 votes vote down vote up
/**
 * @param afpChain Input afpchain. UNMODIFIED
 * @param ca1
 * @param ca2
 * @param optLens
 * @param optAln
 * @return A NEW AfpChain based off the input but with the optAln modified
 * @throws StructureException if an error occured during superposition
 */
public static AFPChain replaceOptAln(AFPChain afpChain, Atom[] ca1, Atom[] ca2,
									 int blockNum, int[] optLens, int[][][] optAln) throws StructureException {
	int optLength = 0;
	for( int blk=0;blk<blockNum;blk++) {
		optLength += optLens[blk];
	}

	//set everything
	AFPChain refinedAFP = (AFPChain) afpChain.clone();
	refinedAFP.setOptLength(optLength);
	refinedAFP.setBlockSize(optLens);
	refinedAFP.setOptLen(optLens);
	refinedAFP.setOptAln(optAln);
	refinedAFP.setBlockNum(blockNum);

	//TODO recalculate properties: superposition, tm-score, etc
	Atom[] ca2clone = StructureTools.cloneAtomArray(ca2); // don't modify ca2 positions
	AlignmentTools.updateSuperposition(refinedAFP, ca1, ca2clone);

	AFPAlignmentDisplay.getAlign(refinedAFP, ca1, ca2clone);
	return refinedAFP;
}
 
Example 2
Source File: AFPOptimizer.java    From biojava with GNU Lesser General Public License v2.1 5 votes vote down vote up
/**
 * get the afp list and residue list for each block
 */

public static void blockInfo(AFPChain afpChain)
{
	int     i, j, k, a, n;

	int blockNum = afpChain.getBlockNum();

	int[] blockSize =afpChain.getBlockSize();
	int[] afpChainList = afpChain.getAfpChainList();
	int[] block2Afp = afpChain.getBlock2Afp();
	int[][][]blockResList = afpChain.getBlockResList();

	List<AFP>afpSet = afpChain.getAfpSet();
	int[] blockResSize = afpChain.getBlockResSize();

	for(i = 0; i < blockNum; i ++)  {
		n = 0;
		for(j = 0; j < blockSize[i]; j ++)      {
			//the index in afpChainList, not in the whole afp set
			a = afpChainList[block2Afp[i] + j];
			for(k = 0; k < afpSet.get(a).getFragLen(); k ++)     {
				blockResList[i][0][n] = afpSet.get(a).getP1() + k;
				blockResList[i][1][n] = afpSet.get(a).getP2() + k;
				n ++;
			}
		}
		blockResSize[i] = n;
	}

	afpChain.setBlockResSize(blockResSize);
	afpChain.setBlockSize(blockSize);
	afpChain.setAfpChainList(afpChainList);
	afpChain.setBlock2Afp(block2Afp);
	afpChain.setBlockResList(blockResList);
}
 
Example 3
Source File: AFPPostProcessor.java    From biojava with GNU Lesser General Public License v2.1 5 votes vote down vote up
/**
return the rmsd of two blocks
 */
private static double combineRmsd(int b1, int b2, AFPChain afpChain,Atom[] ca1,Atom[] ca2)
{
	int     i;
	int     afpn = 0;

	int[] afpChainList =afpChain.getAfpChainList();

	int[] block2Afp = afpChain.getBlock2Afp();
	int[] blockSize = afpChain.getBlockSize();


	int[]   list = new int[blockSize[b1]+blockSize[b2]];
	for(i = block2Afp[b1]; i < block2Afp[b1] + blockSize[b1]; i ++) {
		list[afpn ++] = afpChainList[i];
	}
	for(i = block2Afp[b2]; i < block2Afp[b2] + blockSize[b2]; i ++) {
		list[afpn ++] = afpChainList[i];
	}
	double  rmsd = AFPChainer.calAfpRmsd(afpn, list,0, afpChain,ca1,ca2);

	afpChain.setBlock2Afp(block2Afp);
	afpChain.setBlockSize(blockSize);
	afpChain.setAfpChainList(afpChainList);

	return rmsd;
}
 
Example 4
Source File: FastaAFPChainConverter.java    From biojava with GNU Lesser General Public License v2.1 5 votes vote down vote up
/**
 * Builds an {@link AFPChain} from already-matched arrays of atoms and residues.
 *
 * @param ca1
 *            An array of atoms in the first structure
 * @param ca2
 *            An array of atoms in the second structure
 * @param residues1
 *            An array of {@link ResidueNumber ResidueNumbers} in the first structure that are aligned. Only null ResidueNumbers are considered to be unaligned
 * @param residues2
 *            An array of {@link ResidueNumber ResidueNumbers} in the second structure that are aligned. Only null ResidueNumbers are considered to be unaligned
 * @throws StructureException
 */
private static AFPChain buildAlignment(Atom[] ca1, Atom[] ca2, ResidueNumber[] residues1, ResidueNumber[] residues2)
		throws StructureException {

	// remove any gap
	// this includes the ones introduced by the nullifying above
	List<ResidueNumber> alignedResiduesList1 = new ArrayList<ResidueNumber>();
	List<ResidueNumber> alignedResiduesList2 = new ArrayList<ResidueNumber>();
	for (int i = 0; i < residues1.length; i++) {
		if (residues1[i] != null && residues2[i] != null) {
			alignedResiduesList1.add(residues1[i]);
			alignedResiduesList2.add(residues2[i]);
		}
	}

	ResidueNumber[] alignedResidues1 = alignedResiduesList1.toArray(new ResidueNumber[alignedResiduesList1.size()]);
	ResidueNumber[] alignedResidues2 = alignedResiduesList2.toArray(new ResidueNumber[alignedResiduesList2.size()]);

	AFPChain afpChain = AlignmentTools.createAFPChain(ca1, ca2, alignedResidues1, alignedResidues2);
	afpChain.setAlgorithmName("unknown");

	AlignmentTools.updateSuperposition(afpChain, ca1, ca2);

	afpChain.setBlockSize(new int[] {afpChain.getNrEQR()});
	afpChain.setBlockRmsd(new double[] {afpChain.getTotalRmsdOpt()});
	afpChain.setBlockGap(new int[] {afpChain.getGapLen()});

	return afpChain;

}
 
Example 5
Source File: AFPOptimizer.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * to update the chaining score after block delete and merge processed
 * the blockScore value is important for significance evaluation
 */
public static void updateScore(FatCatParameters params, AFPChain afpChain)
{
	int     i, j, bknow, bkold, g1, g2;


	afpChain.setConn(0d);
	afpChain.setDVar(0d);

	int blockNum = afpChain.getBlockNum();
	int alignScoreUpdate = 0;
	double[] blockScore = afpChain.getBlockScore();
	int[] blockGap = afpChain.getBlockGap();
	int[] blockSize =afpChain.getBlockSize();
	int[] afpChainList = afpChain.getAfpChainList();
	List<AFP>afpSet = afpChain.getAfpSet();
	int[] block2Afp = afpChain.getBlock2Afp();

	double torsionPenalty = params.getTorsionPenalty();


	bkold = 0;
	for(i = 0; i < blockNum; i ++)  {
		blockScore[i] = 0;
		blockGap[i] = 0;
		for(j = 0; j < blockSize[i]; j ++)      {
			bknow = afpChainList[block2Afp[i] + j];
			if(j == 0)      {
				blockScore[i] = afpSet.get(bknow).getScore();
			}
			else    {
				AFPChainer.afpPairConn(bkold, bknow, params, afpChain); //note: j, i
				Double conn = afpChain.getConn();
				blockScore[i] += afpSet.get(bknow).getScore() + conn;
				g1 = afpSet.get(bknow).getP1() - afpSet.get(bkold).getP1() - afpSet.get(bkold).getFragLen();
				g2 = afpSet.get(bknow).getP2() - afpSet.get(bkold).getP2() - afpSet.get(bkold).getFragLen();
				blockGap[i] += (g1 > g2)?g1:g2;
			}
			bkold = bknow;
		}
		alignScoreUpdate += blockScore[i];
	}
	if(blockNum >= 2)       {
		alignScoreUpdate += (blockNum - 1) * torsionPenalty;
	}

	afpChain.setBlockGap(blockGap);
	afpChain.setAlignScoreUpdate(alignScoreUpdate);
	afpChain.setBlockScore(blockScore);
	afpChain.setBlockSize(blockSize);
	afpChain.setAfpChainList(afpChainList);
	afpChain.setBlock2Afp(block2Afp);
}
 
Example 6
Source File: AFPPostProcessor.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * in some special cases, there is no maginificent twists in the
final chaining result; however, their rmsd (original and after
optimizing) are very large. Therefore, a post-process is taken
to split the blocks further at the ralative bad connections (
with relative high distance variation)
to be tested:
  split or not according to optimized or initial chaining???
 */

private static void splitBlock(FatCatParameters params, AFPChain afpChain, Atom[] ca1, Atom[] ca2)
{
	if ( debug)
		System.err.println("AFPPostProcessor: splitBlock");
	int     i, a, bk, cut;
	double  maxs, maxt;
	int blockNum = afpChain.getBlockNum();
	int maxTra = params.getMaxTra();
	double badRmsd = params.getBadRmsd();

	int     blockNum0 = blockNum;

	double[] blockRmsd = afpChain.getBlockRmsd();
	int[] blockSize = afpChain.getBlockSize();
	int[] block2Afp = afpChain.getBlock2Afp();
	double[] afpChainTwiList = afpChain.getAfpChainTwiList();

	bk = 0;
	while(blockNum < maxTra + 1)    {
		maxs = 0;
		for(i = 0; i < blockNum; i ++)   {
			if(blockRmsd[i] > maxs && blockSize[i] > 2) { //according to the optimized alignment
				maxs = blockRmsd[i];
				bk = i;
			} //!(Note: optRmsd, not blockRmsd, according to the optimized alignment
		}
		if(maxs < badRmsd)      break;
		maxt = 0;
		cut = 0;
		for(i = 1; i < blockSize[bk]; i ++)     {
			a = i + block2Afp[bk];
			if(afpChainTwiList[a] > maxt)   {
				maxt = afpChainTwiList[a];
				cut = i;

			}
		}
		if(debug)
			System.out.println(String.format("block %d original size %d rmsd %.3f maxt %.2f cut at %d\n", bk, blockSize[bk], maxs, maxt, cut));
		for(i = blockNum - 1; i > bk; i --)     {
			block2Afp[i + 1] = block2Afp[i];
			blockSize[i + 1] = blockSize[i];
			blockRmsd[i + 1] = blockRmsd[i];
		} //update block information
		block2Afp[bk + 1] = cut + block2Afp[bk];
		blockSize[bk + 1] = blockSize[bk] - cut;
		blockSize[bk] = cut;

		if(debug)
			System.out.println(String.format("  split into %d and %d sizes\n", blockSize[bk], blockSize[bk + 1]));


		int[] afpChainList = afpChain.getAfpChainList();
		//int[] subrange1    = getSubrange(afpChainList, block2Afp[bk + 1] );
		blockRmsd[bk + 1]  = AFPChainer.calAfpRmsd(blockSize[bk + 1],  afpChainList, block2Afp[bk + 1] , afpChain, ca1, ca2);

		//int[] subrange2    = getSubrange(afpChainList, block2Afp[bk] );
		blockRmsd[bk]      = AFPChainer.calAfpRmsd(blockSize[bk],      afpChainList, block2Afp[bk], afpChain, ca1, ca2);

		//split a block at the biggest position
		blockNum ++;
		afpChain.setAfpChainList(afpChainList);
	}
	if(blockNum - blockNum0 > 0)    {
		if(debug)
			System.out.println(String.format("Split %d times:\n", blockNum - blockNum0));
		for(i = 0; i < blockNum; i ++)  {
			if(debug)
				System.out.println(String.format("  block %d size %d from %d rmsd %.3f\n", i, blockSize[i], block2Afp[i], blockRmsd[i]));
		}
	}


	afpChain.setBlockNum(blockNum);
	afpChain.setBlockSize(blockSize);
	afpChain.setBlockRmsd(blockRmsd);
	afpChain.setBlock2Afp(block2Afp);


}
 
Example 7
Source File: AFPPostProcessor.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * remove the artifical small rigid-body superimpose in the middle
 clust the similar superimpositions (caused by the small flexible
 region, which is detected as a seperate rigid superimposing region by adding
 two twists before and after it(artifically!)
 one possible solution: allowing long enough loops in the chaining process,
 which however increase the calculation complexity
 */
private static void deleteBlock(FatCatParameters params, AFPChain afpChain,Atom[] ca1, Atom[] ca2)
{
	int blockNum = afpChain.getBlockNum();
	List<AFP> afpSet = afpChain.getAfpSet();

	int[] afpChainList =afpChain.getAfpChainList();



	int[] block2Afp = afpChain.getBlock2Afp();
	int[] blockSize = afpChain.getBlockSize();

	double[] blockRmsd = afpChain.getBlockRmsd();

	int fragLen = params.getFragLen();

	//remove those blocks (both in terminals and in the middle) with only a AFP
	//but still keep those small blocks spaning large regions
	if(blockNum <= 1)       return;
	int     blockNumOld = blockNum;
	int     i, j, b1, b2, e1, e2, len;
	e1 = e2 = 0;
	for(i = 0; i < blockNum; i ++) {
		b1 = e1;
		b2 = e2;
		if(i < blockNum - 1)    {
			e1 = afpSet.get(afpChainList[block2Afp[i + 1]]).getP1();
			e2 = afpSet.get(afpChainList[block2Afp[i + 1]]).getP2();
		}
		else    {
			e1 = ca1.length;
			e2 = ca2.length;
		}
		if(blockSize[i] > 1)    continue;
		len = (e1 - b1) < (e2 - b2)?(e1 - b1):(e2 - b2);
		//if(i == blockNum - 1) blockNum --;
		if(len < 2 * fragLen)   {
			for(j = i; j < blockNum - 1; j ++)      {
				blockRmsd[j] = blockRmsd[j + 1];
				blockSize[j] = blockSize[j + 1];
				block2Afp[j] = block2Afp[j + 1];
			}
			blockNum --;
			i --;
		} //delete a block
	}
	if(blockNumOld > blockNum)
		if(debug)
			System.out.println(
					String.format("Delete %d small blocks\n", blockNumOld - blockNum)
			);


	if (debug)
		System.err.println("deleteBlock: end blockNum:"+ blockNum);
	afpChain.setBlock2Afp(block2Afp);
	afpChain.setBlockSize(blockSize);
	afpChain.setAfpChainList(afpChainList);
	afpChain.setBlockNum(blockNum);
	afpChain.setBlockRmsd(blockRmsd);
}
 
Example 8
Source File: AFPPostProcessor.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * Merge consecutive blocks with similar transformation
 */
private static  void mergeBlock(FatCatParameters params, AFPChain afpChain,Atom[] ca1,Atom[] ca2)
{

	int blockNum = afpChain.getBlockNum();
	double badRmsd = params.getBadRmsd();

	int[] block2Afp = afpChain.getBlock2Afp();
	int[] blockSize = afpChain.getBlockSize();

	double[] blockRmsd = afpChain.getBlockRmsd();

	int afpChainTwiNum = afpChain.getAfpChainTwiNum();

	//clustering the neighbor blocks if their transformations are similar
	int     i, j, b1, b2, minb1, minb2;
	double  minrmsd;
	int     merge = 0;
	int     blockNumOld = blockNum;
	double[][]  rmsdlist = null;
	if(blockNum > 1)        {
		rmsdlist = new double[blockNumOld][blockNumOld];
		for(b1 = 0; b1 < blockNum - 1; b1 ++)   {
			for(b2 = b1 + 1; b2 < blockNum; b2 ++)  {
				rmsdlist[b1][b2] = combineRmsd(b1, b2,afpChain,ca1,ca2);
			}
		}
	}
	minb1 = 0;
	while(blockNum > 1)     {
		minrmsd = 1000;
		for(i = 0; i < blockNum - 1; i ++)      {
			j = i + 1; //only consider neighbor blocks
			if(minrmsd > rmsdlist[i][j])    {
				minrmsd = rmsdlist[i][j];
				minb1 = i;
			}
		}
		minb2 = minb1 + 1; //merge those most similar blocks
		//maxrmsd = (blockRmsd[minb1] > blockRmsd[minb2])?blockRmsd[minb1]:blockRmsd[minb2];
		if(minrmsd < badRmsd)   {
			if(debug)
				System.out.println(String.format("merge block %d (rmsd %.3f) and %d (rmsd %.3f), total rmsd %.3f\n",
						minb1, blockRmsd[minb1], minb2, blockRmsd[minb2], minrmsd));
			blockSize[minb1] += blockSize[minb2];
			blockRmsd[minb1] = minrmsd;
			for(i = minb2; i < blockNum - 1; i ++)  {
				block2Afp[i] = block2Afp[i + 1];
				blockSize[i] = blockSize[i + 1];
				blockRmsd[i] = blockRmsd[i + 1];
			} //update block information
			afpChainTwiNum --;
			blockNum --;
			for(b1 = 0; b1 < blockNum - 1; b1 ++)   {
				for(b2 = b1 + 1; b2 < blockNum; b2 ++) {
					if(b1 == minb1 || b2 == minb1)  {
						rmsdlist[b1][b2] = combineRmsd(b1, b2, afpChain,ca1,ca2);
					}
					else if(b2 < minb1)     continue;
					else if(b1 < minb1)     {
						rmsdlist[b1][b2] = rmsdlist[b1][b2 + 1];
					}
					else    {
						rmsdlist[b1][b2] = rmsdlist[b1 + 1][b2 + 1];
					}
				}
			} //update the rmsdlist
			merge ++;
		} //merge two blocks
		else if(minrmsd >= 100) break;
		else    {
			rmsdlist[minb1][minb2] += 100;
		} //not merge, modify the rmsdlist so that this combination is not considered in next iteration
	}

	if(merge > 0)       {
		if(debug)
			System.out.println(String.format("Merge %d blocks, remaining %d blocks\n", merge, blockNum));
	}

	if (debug){
		System.err.println("AFPPostProcessor: mergeBlock end blocknum:" + blockNum);
	}
	afpChain.setBlock2Afp(block2Afp);
	afpChain.setBlockSize(blockSize);
	afpChain.setBlockNum(blockNum);
	afpChain.setBlockRmsd(blockRmsd);
	afpChain.setAfpChainTwiNum(afpChainTwiNum);
}
 
Example 9
Source File: AlignmentTools.java    From biojava with GNU Lesser General Public License v2.1 4 votes vote down vote up
/**
 * It replaces an optimal alignment of an AFPChain and calculates all the new alignment scores and variables.
 */
public static AFPChain replaceOptAln(int[][][] newAlgn, AFPChain afpChain, Atom[] ca1, Atom[] ca2) throws StructureException {

	//The order is the number of groups in the newAlgn
	int order = newAlgn.length;

	//Calculate the alignment length from all the subunits lengths
	int[] optLens = new int[order];
	for(int s=0;s<order;s++) {
		optLens[s] = newAlgn[s][0].length;
	}
	int optLength = 0;
	for(int s=0;s<order;s++) {
		optLength += optLens[s];
	}

	//Create a copy of the original AFPChain and set everything needed for the structure update
	AFPChain copyAFP = (AFPChain) afpChain.clone();

	//Set the new parameters of the optimal alignment
	copyAFP.setOptLength(optLength);
	copyAFP.setOptLen(optLens);
	copyAFP.setOptAln(newAlgn);

	//Set the block information of the new alignment
	copyAFP.setBlockNum(order);
	copyAFP.setBlockSize(optLens);
	copyAFP.setBlockResList(newAlgn);
	copyAFP.setBlockResSize(optLens);
	copyAFP.setBlockGap(calculateBlockGap(newAlgn));

	//Recalculate properties: superposition, tm-score, etc
	Atom[] ca2clone = StructureTools.cloneAtomArray(ca2); // don't modify ca2 positions
	AlignmentTools.updateSuperposition(copyAFP, ca1, ca2clone);

	//It re-does the sequence alignment strings from the OptAlgn information only
	copyAFP.setAlnsymb(null);
	AFPAlignmentDisplay.getAlign(copyAFP, ca1, ca2clone);

	return copyAFP;
}