Java Code Examples for org.biojava.nbio.structure.align.model.AFPChain#setBlockSize()
The following examples show how to use
org.biojava.nbio.structure.align.model.AFPChain#setBlockSize() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: AlignmentTools.java From biojava with GNU Lesser General Public License v2.1 | 6 votes |
/** * @param afpChain Input afpchain. UNMODIFIED * @param ca1 * @param ca2 * @param optLens * @param optAln * @return A NEW AfpChain based off the input but with the optAln modified * @throws StructureException if an error occured during superposition */ public static AFPChain replaceOptAln(AFPChain afpChain, Atom[] ca1, Atom[] ca2, int blockNum, int[] optLens, int[][][] optAln) throws StructureException { int optLength = 0; for( int blk=0;blk<blockNum;blk++) { optLength += optLens[blk]; } //set everything AFPChain refinedAFP = (AFPChain) afpChain.clone(); refinedAFP.setOptLength(optLength); refinedAFP.setBlockSize(optLens); refinedAFP.setOptLen(optLens); refinedAFP.setOptAln(optAln); refinedAFP.setBlockNum(blockNum); //TODO recalculate properties: superposition, tm-score, etc Atom[] ca2clone = StructureTools.cloneAtomArray(ca2); // don't modify ca2 positions AlignmentTools.updateSuperposition(refinedAFP, ca1, ca2clone); AFPAlignmentDisplay.getAlign(refinedAFP, ca1, ca2clone); return refinedAFP; }
Example 2
Source File: AFPOptimizer.java From biojava with GNU Lesser General Public License v2.1 | 5 votes |
/** * get the afp list and residue list for each block */ public static void blockInfo(AFPChain afpChain) { int i, j, k, a, n; int blockNum = afpChain.getBlockNum(); int[] blockSize =afpChain.getBlockSize(); int[] afpChainList = afpChain.getAfpChainList(); int[] block2Afp = afpChain.getBlock2Afp(); int[][][]blockResList = afpChain.getBlockResList(); List<AFP>afpSet = afpChain.getAfpSet(); int[] blockResSize = afpChain.getBlockResSize(); for(i = 0; i < blockNum; i ++) { n = 0; for(j = 0; j < blockSize[i]; j ++) { //the index in afpChainList, not in the whole afp set a = afpChainList[block2Afp[i] + j]; for(k = 0; k < afpSet.get(a).getFragLen(); k ++) { blockResList[i][0][n] = afpSet.get(a).getP1() + k; blockResList[i][1][n] = afpSet.get(a).getP2() + k; n ++; } } blockResSize[i] = n; } afpChain.setBlockResSize(blockResSize); afpChain.setBlockSize(blockSize); afpChain.setAfpChainList(afpChainList); afpChain.setBlock2Afp(block2Afp); afpChain.setBlockResList(blockResList); }
Example 3
Source File: AFPPostProcessor.java From biojava with GNU Lesser General Public License v2.1 | 5 votes |
/** return the rmsd of two blocks */ private static double combineRmsd(int b1, int b2, AFPChain afpChain,Atom[] ca1,Atom[] ca2) { int i; int afpn = 0; int[] afpChainList =afpChain.getAfpChainList(); int[] block2Afp = afpChain.getBlock2Afp(); int[] blockSize = afpChain.getBlockSize(); int[] list = new int[blockSize[b1]+blockSize[b2]]; for(i = block2Afp[b1]; i < block2Afp[b1] + blockSize[b1]; i ++) { list[afpn ++] = afpChainList[i]; } for(i = block2Afp[b2]; i < block2Afp[b2] + blockSize[b2]; i ++) { list[afpn ++] = afpChainList[i]; } double rmsd = AFPChainer.calAfpRmsd(afpn, list,0, afpChain,ca1,ca2); afpChain.setBlock2Afp(block2Afp); afpChain.setBlockSize(blockSize); afpChain.setAfpChainList(afpChainList); return rmsd; }
Example 4
Source File: FastaAFPChainConverter.java From biojava with GNU Lesser General Public License v2.1 | 5 votes |
/** * Builds an {@link AFPChain} from already-matched arrays of atoms and residues. * * @param ca1 * An array of atoms in the first structure * @param ca2 * An array of atoms in the second structure * @param residues1 * An array of {@link ResidueNumber ResidueNumbers} in the first structure that are aligned. Only null ResidueNumbers are considered to be unaligned * @param residues2 * An array of {@link ResidueNumber ResidueNumbers} in the second structure that are aligned. Only null ResidueNumbers are considered to be unaligned * @throws StructureException */ private static AFPChain buildAlignment(Atom[] ca1, Atom[] ca2, ResidueNumber[] residues1, ResidueNumber[] residues2) throws StructureException { // remove any gap // this includes the ones introduced by the nullifying above List<ResidueNumber> alignedResiduesList1 = new ArrayList<ResidueNumber>(); List<ResidueNumber> alignedResiduesList2 = new ArrayList<ResidueNumber>(); for (int i = 0; i < residues1.length; i++) { if (residues1[i] != null && residues2[i] != null) { alignedResiduesList1.add(residues1[i]); alignedResiduesList2.add(residues2[i]); } } ResidueNumber[] alignedResidues1 = alignedResiduesList1.toArray(new ResidueNumber[alignedResiduesList1.size()]); ResidueNumber[] alignedResidues2 = alignedResiduesList2.toArray(new ResidueNumber[alignedResiduesList2.size()]); AFPChain afpChain = AlignmentTools.createAFPChain(ca1, ca2, alignedResidues1, alignedResidues2); afpChain.setAlgorithmName("unknown"); AlignmentTools.updateSuperposition(afpChain, ca1, ca2); afpChain.setBlockSize(new int[] {afpChain.getNrEQR()}); afpChain.setBlockRmsd(new double[] {afpChain.getTotalRmsdOpt()}); afpChain.setBlockGap(new int[] {afpChain.getGapLen()}); return afpChain; }
Example 5
Source File: AFPOptimizer.java From biojava with GNU Lesser General Public License v2.1 | 4 votes |
/** * to update the chaining score after block delete and merge processed * the blockScore value is important for significance evaluation */ public static void updateScore(FatCatParameters params, AFPChain afpChain) { int i, j, bknow, bkold, g1, g2; afpChain.setConn(0d); afpChain.setDVar(0d); int blockNum = afpChain.getBlockNum(); int alignScoreUpdate = 0; double[] blockScore = afpChain.getBlockScore(); int[] blockGap = afpChain.getBlockGap(); int[] blockSize =afpChain.getBlockSize(); int[] afpChainList = afpChain.getAfpChainList(); List<AFP>afpSet = afpChain.getAfpSet(); int[] block2Afp = afpChain.getBlock2Afp(); double torsionPenalty = params.getTorsionPenalty(); bkold = 0; for(i = 0; i < blockNum; i ++) { blockScore[i] = 0; blockGap[i] = 0; for(j = 0; j < blockSize[i]; j ++) { bknow = afpChainList[block2Afp[i] + j]; if(j == 0) { blockScore[i] = afpSet.get(bknow).getScore(); } else { AFPChainer.afpPairConn(bkold, bknow, params, afpChain); //note: j, i Double conn = afpChain.getConn(); blockScore[i] += afpSet.get(bknow).getScore() + conn; g1 = afpSet.get(bknow).getP1() - afpSet.get(bkold).getP1() - afpSet.get(bkold).getFragLen(); g2 = afpSet.get(bknow).getP2() - afpSet.get(bkold).getP2() - afpSet.get(bkold).getFragLen(); blockGap[i] += (g1 > g2)?g1:g2; } bkold = bknow; } alignScoreUpdate += blockScore[i]; } if(blockNum >= 2) { alignScoreUpdate += (blockNum - 1) * torsionPenalty; } afpChain.setBlockGap(blockGap); afpChain.setAlignScoreUpdate(alignScoreUpdate); afpChain.setBlockScore(blockScore); afpChain.setBlockSize(blockSize); afpChain.setAfpChainList(afpChainList); afpChain.setBlock2Afp(block2Afp); }
Example 6
Source File: AFPPostProcessor.java From biojava with GNU Lesser General Public License v2.1 | 4 votes |
/** * in some special cases, there is no maginificent twists in the final chaining result; however, their rmsd (original and after optimizing) are very large. Therefore, a post-process is taken to split the blocks further at the ralative bad connections ( with relative high distance variation) to be tested: split or not according to optimized or initial chaining??? */ private static void splitBlock(FatCatParameters params, AFPChain afpChain, Atom[] ca1, Atom[] ca2) { if ( debug) System.err.println("AFPPostProcessor: splitBlock"); int i, a, bk, cut; double maxs, maxt; int blockNum = afpChain.getBlockNum(); int maxTra = params.getMaxTra(); double badRmsd = params.getBadRmsd(); int blockNum0 = blockNum; double[] blockRmsd = afpChain.getBlockRmsd(); int[] blockSize = afpChain.getBlockSize(); int[] block2Afp = afpChain.getBlock2Afp(); double[] afpChainTwiList = afpChain.getAfpChainTwiList(); bk = 0; while(blockNum < maxTra + 1) { maxs = 0; for(i = 0; i < blockNum; i ++) { if(blockRmsd[i] > maxs && blockSize[i] > 2) { //according to the optimized alignment maxs = blockRmsd[i]; bk = i; } //!(Note: optRmsd, not blockRmsd, according to the optimized alignment } if(maxs < badRmsd) break; maxt = 0; cut = 0; for(i = 1; i < blockSize[bk]; i ++) { a = i + block2Afp[bk]; if(afpChainTwiList[a] > maxt) { maxt = afpChainTwiList[a]; cut = i; } } if(debug) System.out.println(String.format("block %d original size %d rmsd %.3f maxt %.2f cut at %d\n", bk, blockSize[bk], maxs, maxt, cut)); for(i = blockNum - 1; i > bk; i --) { block2Afp[i + 1] = block2Afp[i]; blockSize[i + 1] = blockSize[i]; blockRmsd[i + 1] = blockRmsd[i]; } //update block information block2Afp[bk + 1] = cut + block2Afp[bk]; blockSize[bk + 1] = blockSize[bk] - cut; blockSize[bk] = cut; if(debug) System.out.println(String.format(" split into %d and %d sizes\n", blockSize[bk], blockSize[bk + 1])); int[] afpChainList = afpChain.getAfpChainList(); //int[] subrange1 = getSubrange(afpChainList, block2Afp[bk + 1] ); blockRmsd[bk + 1] = AFPChainer.calAfpRmsd(blockSize[bk + 1], afpChainList, block2Afp[bk + 1] , afpChain, ca1, ca2); //int[] subrange2 = getSubrange(afpChainList, block2Afp[bk] ); blockRmsd[bk] = AFPChainer.calAfpRmsd(blockSize[bk], afpChainList, block2Afp[bk], afpChain, ca1, ca2); //split a block at the biggest position blockNum ++; afpChain.setAfpChainList(afpChainList); } if(blockNum - blockNum0 > 0) { if(debug) System.out.println(String.format("Split %d times:\n", blockNum - blockNum0)); for(i = 0; i < blockNum; i ++) { if(debug) System.out.println(String.format(" block %d size %d from %d rmsd %.3f\n", i, blockSize[i], block2Afp[i], blockRmsd[i])); } } afpChain.setBlockNum(blockNum); afpChain.setBlockSize(blockSize); afpChain.setBlockRmsd(blockRmsd); afpChain.setBlock2Afp(block2Afp); }
Example 7
Source File: AFPPostProcessor.java From biojava with GNU Lesser General Public License v2.1 | 4 votes |
/** * remove the artifical small rigid-body superimpose in the middle clust the similar superimpositions (caused by the small flexible region, which is detected as a seperate rigid superimposing region by adding two twists before and after it(artifically!) one possible solution: allowing long enough loops in the chaining process, which however increase the calculation complexity */ private static void deleteBlock(FatCatParameters params, AFPChain afpChain,Atom[] ca1, Atom[] ca2) { int blockNum = afpChain.getBlockNum(); List<AFP> afpSet = afpChain.getAfpSet(); int[] afpChainList =afpChain.getAfpChainList(); int[] block2Afp = afpChain.getBlock2Afp(); int[] blockSize = afpChain.getBlockSize(); double[] blockRmsd = afpChain.getBlockRmsd(); int fragLen = params.getFragLen(); //remove those blocks (both in terminals and in the middle) with only a AFP //but still keep those small blocks spaning large regions if(blockNum <= 1) return; int blockNumOld = blockNum; int i, j, b1, b2, e1, e2, len; e1 = e2 = 0; for(i = 0; i < blockNum; i ++) { b1 = e1; b2 = e2; if(i < blockNum - 1) { e1 = afpSet.get(afpChainList[block2Afp[i + 1]]).getP1(); e2 = afpSet.get(afpChainList[block2Afp[i + 1]]).getP2(); } else { e1 = ca1.length; e2 = ca2.length; } if(blockSize[i] > 1) continue; len = (e1 - b1) < (e2 - b2)?(e1 - b1):(e2 - b2); //if(i == blockNum - 1) blockNum --; if(len < 2 * fragLen) { for(j = i; j < blockNum - 1; j ++) { blockRmsd[j] = blockRmsd[j + 1]; blockSize[j] = blockSize[j + 1]; block2Afp[j] = block2Afp[j + 1]; } blockNum --; i --; } //delete a block } if(blockNumOld > blockNum) if(debug) System.out.println( String.format("Delete %d small blocks\n", blockNumOld - blockNum) ); if (debug) System.err.println("deleteBlock: end blockNum:"+ blockNum); afpChain.setBlock2Afp(block2Afp); afpChain.setBlockSize(blockSize); afpChain.setAfpChainList(afpChainList); afpChain.setBlockNum(blockNum); afpChain.setBlockRmsd(blockRmsd); }
Example 8
Source File: AFPPostProcessor.java From biojava with GNU Lesser General Public License v2.1 | 4 votes |
/** * Merge consecutive blocks with similar transformation */ private static void mergeBlock(FatCatParameters params, AFPChain afpChain,Atom[] ca1,Atom[] ca2) { int blockNum = afpChain.getBlockNum(); double badRmsd = params.getBadRmsd(); int[] block2Afp = afpChain.getBlock2Afp(); int[] blockSize = afpChain.getBlockSize(); double[] blockRmsd = afpChain.getBlockRmsd(); int afpChainTwiNum = afpChain.getAfpChainTwiNum(); //clustering the neighbor blocks if their transformations are similar int i, j, b1, b2, minb1, minb2; double minrmsd; int merge = 0; int blockNumOld = blockNum; double[][] rmsdlist = null; if(blockNum > 1) { rmsdlist = new double[blockNumOld][blockNumOld]; for(b1 = 0; b1 < blockNum - 1; b1 ++) { for(b2 = b1 + 1; b2 < blockNum; b2 ++) { rmsdlist[b1][b2] = combineRmsd(b1, b2,afpChain,ca1,ca2); } } } minb1 = 0; while(blockNum > 1) { minrmsd = 1000; for(i = 0; i < blockNum - 1; i ++) { j = i + 1; //only consider neighbor blocks if(minrmsd > rmsdlist[i][j]) { minrmsd = rmsdlist[i][j]; minb1 = i; } } minb2 = minb1 + 1; //merge those most similar blocks //maxrmsd = (blockRmsd[minb1] > blockRmsd[minb2])?blockRmsd[minb1]:blockRmsd[minb2]; if(minrmsd < badRmsd) { if(debug) System.out.println(String.format("merge block %d (rmsd %.3f) and %d (rmsd %.3f), total rmsd %.3f\n", minb1, blockRmsd[minb1], minb2, blockRmsd[minb2], minrmsd)); blockSize[minb1] += blockSize[minb2]; blockRmsd[minb1] = minrmsd; for(i = minb2; i < blockNum - 1; i ++) { block2Afp[i] = block2Afp[i + 1]; blockSize[i] = blockSize[i + 1]; blockRmsd[i] = blockRmsd[i + 1]; } //update block information afpChainTwiNum --; blockNum --; for(b1 = 0; b1 < blockNum - 1; b1 ++) { for(b2 = b1 + 1; b2 < blockNum; b2 ++) { if(b1 == minb1 || b2 == minb1) { rmsdlist[b1][b2] = combineRmsd(b1, b2, afpChain,ca1,ca2); } else if(b2 < minb1) continue; else if(b1 < minb1) { rmsdlist[b1][b2] = rmsdlist[b1][b2 + 1]; } else { rmsdlist[b1][b2] = rmsdlist[b1 + 1][b2 + 1]; } } } //update the rmsdlist merge ++; } //merge two blocks else if(minrmsd >= 100) break; else { rmsdlist[minb1][minb2] += 100; } //not merge, modify the rmsdlist so that this combination is not considered in next iteration } if(merge > 0) { if(debug) System.out.println(String.format("Merge %d blocks, remaining %d blocks\n", merge, blockNum)); } if (debug){ System.err.println("AFPPostProcessor: mergeBlock end blocknum:" + blockNum); } afpChain.setBlock2Afp(block2Afp); afpChain.setBlockSize(blockSize); afpChain.setBlockNum(blockNum); afpChain.setBlockRmsd(blockRmsd); afpChain.setAfpChainTwiNum(afpChainTwiNum); }
Example 9
Source File: AlignmentTools.java From biojava with GNU Lesser General Public License v2.1 | 4 votes |
/** * It replaces an optimal alignment of an AFPChain and calculates all the new alignment scores and variables. */ public static AFPChain replaceOptAln(int[][][] newAlgn, AFPChain afpChain, Atom[] ca1, Atom[] ca2) throws StructureException { //The order is the number of groups in the newAlgn int order = newAlgn.length; //Calculate the alignment length from all the subunits lengths int[] optLens = new int[order]; for(int s=0;s<order;s++) { optLens[s] = newAlgn[s][0].length; } int optLength = 0; for(int s=0;s<order;s++) { optLength += optLens[s]; } //Create a copy of the original AFPChain and set everything needed for the structure update AFPChain copyAFP = (AFPChain) afpChain.clone(); //Set the new parameters of the optimal alignment copyAFP.setOptLength(optLength); copyAFP.setOptLen(optLens); copyAFP.setOptAln(newAlgn); //Set the block information of the new alignment copyAFP.setBlockNum(order); copyAFP.setBlockSize(optLens); copyAFP.setBlockResList(newAlgn); copyAFP.setBlockResSize(optLens); copyAFP.setBlockGap(calculateBlockGap(newAlgn)); //Recalculate properties: superposition, tm-score, etc Atom[] ca2clone = StructureTools.cloneAtomArray(ca2); // don't modify ca2 positions AlignmentTools.updateSuperposition(copyAFP, ca1, ca2clone); //It re-does the sequence alignment strings from the OptAlgn information only copyAFP.setAlnsymb(null); AFPAlignmentDisplay.getAlign(copyAFP, ca1, ca2clone); return copyAFP; }