Java Code Examples for weka.filters.unsupervised.attribute.Remove#setAttributeIndicesArray()
The following examples show how to use
weka.filters.unsupervised.attribute.Remove#setAttributeIndicesArray() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: RankingByPairwiseComparison.java From AILibs with GNU Affero General Public License v3.0 | 6 votes |
private Instances applyFiltersToDataset(final Instances dataset) throws Exception { Remove removeFilter = new Remove(); removeFilter.setAttributeIndicesArray(this.labelIndices.stream().mapToInt(x -> x).toArray()); removeFilter.setInvertSelection(false); removeFilter.setInputFormat(dataset); Instances filteredDataset = Filter.useFilter(dataset, removeFilter); Add addTarget = new Add(); addTarget.setAttributeIndex("last"); addTarget.setNominalLabels("true,false"); addTarget.setAttributeName("a>b"); addTarget.setInputFormat(filteredDataset); filteredDataset = Filter.useFilter(filteredDataset, addTarget); filteredDataset.setClassIndex(filteredDataset.numAttributes() - 1); return filteredDataset; }
Example 2
Source File: RuleNode.java From tsml with GNU General Public License v3.0 | 5 votes |
/** * Build a linear model for this node using those attributes * specified in indices. * * @param indices an array of attribute indices to include in the linear * model * @throws Exception if something goes wrong */ private void buildLinearModel(int [] indices) throws Exception { // copy the training instances and remove all but the tested // attributes Instances reducedInst = new Instances(m_instances); Remove attributeFilter = new Remove(); attributeFilter.setInvertSelection(true); attributeFilter.setAttributeIndicesArray(indices); attributeFilter.setInputFormat(reducedInst); reducedInst = Filter.useFilter(reducedInst, attributeFilter); // build a linear regression for the training data using the // tested attributes LinearRegression temp = new LinearRegression(); temp.buildClassifier(reducedInst); double [] lmCoeffs = temp.coefficients(); double [] coeffs = new double [m_instances.numAttributes()]; for (int i = 0; i < lmCoeffs.length - 1; i++) { if (indices[i] != m_classIndex) { coeffs[indices[i]] = lmCoeffs[i]; } } m_nodeModel = new PreConstructedLinearModel(coeffs, lmCoeffs[lmCoeffs.length - 1]); m_nodeModel.buildClassifier(m_instances); }
Example 3
Source File: WekaMatchingRule.java From winter with Apache License 2.0 | 4 votes |
/** * Apply trained model to a candidate record-pair. Therefore a new * FeatureDataSet is created, which is afterwards classified as match or * non-match * * @param record1 * the first record (must not be null) * @param record2 * the second record (must not be null) * @param schemaCorrespondences * the schema correspondences between the first and the second * records * @return A correspondence holding the input parameters plus the * classification´s result, which is either match (1.0) or * non-match(0.0). */ @Override public Correspondence<RecordType, SchemaElementType> apply(RecordType record1, RecordType record2, Processable<Correspondence<SchemaElementType, Matchable>> schemaCorrespondences) { if (this.classifier == null) { logger.error("Please initialise a classifier!"); return null; } else { FeatureVectorDataSet matchSet = this.initialiseFeatures(record1, record2, schemaCorrespondences); Record matchRecord = generateFeatures(record1, record2, schemaCorrespondences, matchSet); // transform entry for classification. matchSet.add(matchRecord); Instances matchInstances = this.transformToWeka(matchSet, this.matchSet); // reduce dimensions if feature subset selection was applied before. if ((this.backwardSelection || this.forwardSelection) && this.fs != null) try { Remove removeFilter = new Remove(); removeFilter.setAttributeIndicesArray(this.fs.selectedAttributes()); removeFilter.setInvertSelection(true); removeFilter.setInputFormat(matchInstances); matchInstances = Filter.useFilter(matchInstances, removeFilter); } catch (Exception e1) { e1.printStackTrace(); } // Apply matching rule try { double[] distribution = this.classifier.distributionForInstance(matchInstances.firstInstance()); int positiveClassIndex = matchInstances.attribute(matchInstances.classIndex()).indexOfValue("1"); double matchConfidence = distribution[positiveClassIndex]; if (this.isDebugReportActive()) { fillSimilarity(record1, record2, matchConfidence); } return new Correspondence<RecordType, SchemaElementType>(record1, record2, matchConfidence, schemaCorrespondences); } catch (Exception e) { e.printStackTrace(); logger.error(String.format("Classifier Exception for Record '%s': %s", matchRecord == null ? "null" : matchRecord.toString(), e.getMessage())); } return null; } }
Example 4
Source File: BRq.java From meka with GNU General Public License v3.0 | 4 votes |
@Override public void buildClassifier(Instances data) throws Exception { testCapabilities(data); int c = data.classIndex(); if(getDebug()) System.out.print("-: Creating "+c+" models ("+m_Classifier.getClass().getName()+"): "); m_MultiClassifiers = AbstractClassifier.makeCopies(m_Classifier,c); Instances sub_data = null; for(int i = 0; i < c; i++) { int indices[][] = new int[c][c - 1]; for(int j = 0, k = 0; j < c; j++) { if(j != i) { indices[i][k++] = j; } } //Select only class attribute 'i' Remove FilterRemove = new Remove(); FilterRemove.setAttributeIndicesArray(indices[i]); FilterRemove.setInputFormat(data); FilterRemove.setInvertSelection(true); sub_data = Filter.useFilter(data, FilterRemove); sub_data.setClassIndex(0); /* BEGIN downsample for this link */ sub_data.randomize(m_Random); int numToRemove = sub_data.numInstances() - (int)Math.round(sub_data.numInstances() * m_DownSampleRatio); for(int m = 0, removed = 0; m < sub_data.numInstances(); m++) { if (sub_data.instance(m).classValue() <= 0.0) { sub_data.instance(m).setClassMissing(); if (++removed >= numToRemove) break; } } sub_data.deleteWithMissingClass(); /* END downsample for this link */ //Build the classifier for that class m_MultiClassifiers[i].buildClassifier(sub_data); if(getDebug()) System.out.print(" " + (i+1)); } if(getDebug()) System.out.println(" :-"); m_InstancesTemplate = new Instances(sub_data, 0); }