Java Code Examples for weka.filters.unsupervised.attribute.Remove#setOptions()
The following examples show how to use
weka.filters.unsupervised.attribute.Remove#setOptions() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: FilterAttribute.java From Hands-On-Artificial-Intelligence-with-Java-for-Beginners with MIT License | 7 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try{ DataSource src = new DataSource("/Users/admin/Documents/NetBeansProjects/Datasets/weather.arff"); Instances dt = src.getDataSet(); String[] op = new String[]{"-R","2-4"}; Remove rmv = new Remove(); rmv.setOptions(op); rmv.setInputFormat(dt); Instances nd = Filter.useFilter(dt, rmv); ArffSaver s = new ArffSaver(); s.setInstances(nd); s.setFile(new File("fw.arff")); s.writeBatch(); } catch(Exception e){ System.out.println(e.getMessage()); } }
Example 2
Source File: SelectWords.java From hlta with GNU General Public License v3.0 | 6 votes |
/** * Keep the words we want. * * @param out * @param options * @throws Exception */ private void removeWords(String output, String[] options, boolean inverse) throws Exception { Remove remove = new Remove(); if(inverse) { remove.setAttributeIndices(options[1]); remove.setInvertSelection(true); }else { remove.setOptions(options); } remove.setInputFormat(m_instances); Instances newData = Filter.useFilter(m_instances, remove); ArffSaver saver = new ArffSaver(); saver.setInstances(newData); saver.setFile(new File(output)); saver.writeBatch(); }
Example 3
Source File: RandomSubSpace.java From tsml with GNU General Public License v3.0 | 4 votes |
/** * builds the classifier. * * @param data the training data to be used for generating the * classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class m_data = new Instances(data); m_data.deleteWithMissingClass(); // only class? -> build ZeroR model if (m_data.numAttributes() == 1) { System.err.println( "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(m_data); return; } else { m_ZeroR = null; } super.buildClassifier(data); Integer[] indices = new Integer[data.numAttributes()-1]; int classIndex = data.classIndex(); int offset = 0; for(int i = 0; i < indices.length+1; i++) { if (i != classIndex) { indices[offset++] = i+1; } } int subSpaceSize = numberOfAttributes(indices.length, getSubSpaceSize()); Random random = data.getRandomNumberGenerator(m_Seed); for (int j = 0; j < m_Classifiers.length; j++) { if (m_Classifier instanceof Randomizable) { ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt()); } FilteredClassifier fc = new FilteredClassifier(); fc.setClassifier(m_Classifiers[j]); m_Classifiers[j] = fc; Remove rm = new Remove(); rm.setOptions(new String[]{"-V", "-R", randomSubSpace(indices,subSpaceSize,classIndex+1,random)}); fc.setFilter(rm); // build the classifier //m_Classifiers[j].buildClassifier(m_data); } buildClassifiers(); // save memory m_data = null; }
Example 4
Source File: RegressionTask.java From Machine-Learning-in-Java with MIT License | 4 votes |
public static void main(String[] args) throws Exception { /* * Load data */ CSVLoader loader = new CSVLoader(); loader.setFieldSeparator(","); loader.setSource(new File("data/ENB2012_data.csv")); Instances data = loader.getDataSet(); // System.out.println(data); /* * Build regression models */ // set class index to Y1 (heating load) data.setClassIndex(data.numAttributes() - 2); // remove last attribute Y2 Remove remove = new Remove(); remove.setOptions(new String[] { "-R", data.numAttributes() + "" }); remove.setInputFormat(data); data = Filter.useFilter(data, remove); // build a regression model LinearRegression model = new LinearRegression(); model.buildClassifier(data); System.out.println(model); // 10-fold cross-validation Evaluation eval = new Evaluation(data); eval.crossValidateModel(model, data, 10, new Random(1), new String[] {}); System.out.println(eval.toSummaryString()); double coef[] = model.coefficients(); System.out.println(); // build a regression tree model M5P md5 = new M5P(); md5.setOptions(new String[] { "" }); md5.buildClassifier(data); System.out.println(md5); // 10-fold cross-validation eval.crossValidateModel(md5, data, 10, new Random(1), new String[] {}); System.out.println(eval.toSummaryString()); System.out.println(); /* * Bonus: Build additional models */ // ZeroR modelZero = new ZeroR(); // // // // // // REPTree modelTree = new REPTree(); // modelTree.buildClassifier(data); // System.out.println(modelTree); // eval = new Evaluation(data); // eval.crossValidateModel(modelTree, data, 10, new Random(1), new // String[]{}); // System.out.println(eval.toSummaryString()); // // SMOreg modelSVM = new SMOreg(); // // MultilayerPerceptron modelPerc = new MultilayerPerceptron(); // // GaussianProcesses modelGP = new GaussianProcesses(); // modelGP.buildClassifier(data); // System.out.println(modelGP); // eval = new Evaluation(data); // eval.crossValidateModel(modelGP, data, 10, new Random(1), new // String[]{}); // System.out.println(eval.toSummaryString()); /* * Bonus: Save ARFF */ // ArffSaver saver = new ArffSaver(); // saver.setInstances(data); // saver.setFile(new File(args[1])); // saver.setDestination(new File(args[1])); // saver.writeBatch(); }