Java Code Examples for org.neuroph.nnet.MultiLayerPerceptron#randomizeWeights()
The following examples show how to use
org.neuroph.nnet.MultiLayerPerceptron#randomizeWeights() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MomentumBackPropagationTest.java From NeurophFramework with Apache License 2.0 | 7 votes |
@Test public void testXorMSE() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); MeanSquaredError mse = new MeanSquaredError(); for (DataSetRow testSetRow : xorDataSet.getRows()) { myMlPerceptron.setInput(testSetRow.getInput()); myMlPerceptron.calculate(); double[] networkOutput = myMlPerceptron.getOutput(); mse.addPatternError(networkOutput, testSetRow.getDesiredOutput()); } assertTrue(mse.getTotalError() < maxError); }
Example 2
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 7 votes |
@Test public void testXorMSE() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); MeanSquaredError mse = new MeanSquaredError(); for (DataSetRow testSetRow : xorDataSet.getRows()) { myMlPerceptron.setInput(testSetRow.getInput()); myMlPerceptron.calculate(); double[] networkOutput = myMlPerceptron.getOutput(); mse.addPatternError(networkOutput, testSetRow.getDesiredOutput()); } assertTrue(mse.getTotalError() < maxError); }
Example 3
Source File: MomentumBackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testXorMaxError() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); assertTrue(instance.getTotalNetworkError() < maxError); }
Example 4
Source File: MomentumBackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testIrisMaxError() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(4, 16, 3); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(irisDataSet); assertTrue(instance.getTotalNetworkError() < maxError); }
Example 5
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testXorMaxError() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); assertTrue(instance.getTotalNetworkError() < maxError); }
Example 6
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testIrisMaxError() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(4, 16, 3); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(irisDataSet); assertTrue(instance.getTotalNetworkError() < maxError); }
Example 7
Source File: RandomizationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Runs this sample */ public static void main(String[] args) { MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(2, 3, 1); // neuralNet.randomizeWeights(new WeightsRandomizer()); // neuralNet.randomizeWeights(new RangeRandomizer(0.1, 0.9)); // neuralNet.randomizeWeights(new GaussianRandomizer(0.4, 0.3)); neuralNet.randomizeWeights(new NguyenWidrowRandomizer(0.3, 0.7)); printWeights(neuralNet); neuralNet.randomizeWeights(new DistortRandomizer(0.5)); printWeights(neuralNet); }
Example 8
Source File: XorMultiLayerPerceptronSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
/** * Runs this sample */ public void run() { // create training set (logical XOR function) DataSet trainingSet = new DataSet(2, 1); trainingSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); // create multi layer perceptron MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); System.out.println(Arrays.toString(myMlPerceptron.getWeights())); myMlPerceptron.setLearningRule(new BackPropagation()); myMlPerceptron.getLearningRule().setLearningRate(0.5); // enable batch if using MomentumBackpropagation // if( myMlPerceptron.getLearningRule() instanceof MomentumBackpropagation ) // ((MomentumBackpropagation)myMlPerceptron.getLearningRule()).setBatchMode(false); LearningRule learningRule = myMlPerceptron.getLearningRule(); learningRule.addListener(this); // learn the training set System.out.println("Training neural network..."); myMlPerceptron.learn(trainingSet); // test perceptron System.out.println("Testing trained neural network"); testNeuralNetwork(myMlPerceptron, trainingSet); // save trained neural network myMlPerceptron.save("myMlPerceptron.nnet"); // load saved neural network NeuralNetwork loadedMlPerceptron = NeuralNetwork.createFromFile("myMlPerceptron.nnet"); // test loaded neural network System.out.println("Testing loaded neural network"); testNeuralNetwork(loadedMlPerceptron, trainingSet); }